Published 2024-07-30
Keywords
- CuO nanoparticles,
- Chemical Precipitation,
- PMMA,
- Spin coating
Copyright (c) 2024 Unniyarcha K.K, Kathirvel P, Lakshmi Mohan, Saravanakumar S (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
CuO nano petals are synthesised by the chemical precipitation method. XRD, SEM, and TEM are used to accomplish structural and morphological studies. Based on XRD results, the average grain size is calculated to be 12 nm, and the structure of nanoparticles is identified as Monoclinic. SEM and TEM analyses confirm that the synthesised nanostructure exhibits a nano petal morphology. The optical properties are characterised using UV-vis DRS Spectrophotometer, and the band gap is determined to be 1.3 eV. Three samples of PMMA, each with varying concentrations of CuO (10%, 20% and 30% nano petals) are spin-coated onto pre-cleaned FTO-coated glass substrates. The current-voltage characteristics of the annealed film are studied by the two-point probe method. The film with 10% CuO exhibited better D.C conductivity than the other concentrations.
References
- F. Wang, H. Li, Z. Yuan, Y. Sun, F. Chang, H. Deng, A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol–gel method. RSC advances, 6(83), (2016) 79343-79349. https://doi.org/10.1039/C6RA13876D
- P. Sutradhar, M. Saha, D. Maiti, Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. Journal of Nanostructure in Chemistry, 4, (2014) 1-6. https://doi.org/10.1007/s40097-014-0086-1
- M. Shahmiri, N.A. Ibrahim, F. Shayesteh, N. Asim, N. Motallebi, Preparation of PVP-coated copper oxide nanosheets as antibacterial and antifungal agents. journal of Materials Research, 28(22), (2013) 3109-3118. https://doi.org/10.1557/jmr.2013.316
- A. Pandith, G.K. Jayaprakash, Z.A. ALOthman, Surface-modified CuO nanoparticles for photocatalysis and highly efficient energy storage devices. Environmental Science and Pollution Research, 30(15), (2023) 43320-43330. https://doi.org/10.1007/s11356-023-25131-4
- M. Suleiman, M. Mousa, A. Hussein, B. Hammouti, T.B. Hadda, I. Warad, Copper (II)-oxide nanostructures: synthesis, characterizations and their applications-review. Journal of Materials and Environmental Science, 4(5), (2013) 792-797.
- Z.N. Kayani, M. Umer, S. Riaz, S. Naseem, Characterization of copper oxide nanoparticles fabricated by the sol–gel method. Journal of Electronic Materials, 44, (2015) 3704-3709. https://doi.org/10.1007/s11664-015-3867-5
- M. Outokesh, M. Hosseinpour, S.J. Ahmadi, T. Mousavand, S. Sadjadi, W. Soltanian, Hydrothermal synthesis of CuO nanoparticles: study on effects of operational conditions on yield, purity, and size of the nanoparticles. Industrial & engineering chemistry research, 50(6), (2011) 3540-3554. https://doi.org/10.1021/ie1017089
- N. Wongpisutpaisan, P. Charoonsuk, N. Vittayakorn, W. Pecharapa, Sonochemical synthesis and characterization of copper oxide nanoparticles. Energy Procedia, 9, (2011) 404-409. https://doi.org/10.1016/j.egypro.2011.09.044
- I.Z. Luna, L.N. Hilary, A.S. Chowdhury, M.A. Gafur, N. Khan, R.A. Khan, Preparation and characterization of copper oxide nanoparticles synthesized via chemical precipitation method. Open Access Library Journal, 2(3), (2015)1-8. https://doi.org/10.4236/oalib.1101409
- A. Chauhan, R. Verma, K.M. Batoo, S. Kumari, R. Kalia, R. Kumar, M. Hadi, E.H. Raslan, A. Imran, Structural and optical properties of copper oxide nanoparticles: A study of variation in structure and antibiotic activity. Journal of Materials Research, 36, (2021) 1496-1509. https://doi.org/10.1557/s43578-021-00193-7
- W.M. Rangel, R.A.A.B. Santa, H.G. Riella, A facile method for synthesis of nanostructured copper (II) oxide by coprecipitation. Journal of Materials Research and Technology, 9(1), (2020) 994-1004. https://doi.org/10.1016/j.jmrt.2019.11.039
- S. El-Sayed, A.M.E. Sayed, Preparation and characterization of CuO/Co3O4/poly (methyl methacrylate) nanocomposites for optical and dielectric applications. Journal of Materials Science: Materials in Electronics, 32(10), (2021) 13719-13737. https://doi.org/10.1007/s10854-021-05949-9
- I.H. Hilal, R.H. Jabbar, A.H. Muslime, W.A. Shakir, (2020) Preparation (PMMA/PVA)-copper oxide nanocomposites solar cel. In AIP Conference Proceedings, AIP Publishing.
- S. Sathya, P.S. Murthy, A. Das, G.G. Sankar, S. Venkatnarayanan, R. Pandian, M. Doble, V.P. Venugopalan, Marine antifouling property of PMMA nanocomposite films: Results of laboratory and field assessment. International Biodeterioration & Biodegradation, 114, (2016) 57-66. https://doi.org/10.1016/j.ibiod.2016.05.026
- U. Holzwarth, N. Gibson, The Scherrer equation versus the'Debye-Scherrer equation'. Nature nanotechnology, 6(9), (2011) 534-534. https://doi.org/10.1038/nnano.2011.145
- S. Kose, F. Atay, V. Bilgin, I. Akyuz, Some physical properties of copper oxide films: The effect of substrate temperature. Materials Chemistry and Physics, 111(2-3), (2008) 351-358. https://doi.org/10.1016/j.matchemphys.2008.04.025
- M.A. Khan, N. Nayan, M.K. Ahmad, C.F. Soon, Surface study of CuO nanopetals by advanced nanocharacterization techniques with enhanced optical and catalytic properties. Nanomaterials, 10(7), (2020) 1298. https://doi.org/10.3390/nano10071298
- R. Nayak, F.A. Ali, D.K. Mishra, D. Ray, V.K. Aswal, S.K. Sahoo, B. Nanda, Fabrication of CuO nanoparticle: An efficient catalyst utilized for sensing and degradation of phenol. Journal of Materials Research and Technology, 9(5), (2020) 11045-11059. https://doi.org/10.1016/j.jmrt.2020.07.100
- E. Laghchim, A. Raidou, A. Fahmi, E. Ouabida, M. Fahoume, Exploring the correlation between the bandgap engineering and defect density toward high CTS solar cell efficiency. Materials Today Communications, 37, (2023) 106949. https://doi.org/10.1016/j.mtcomm.2023.106949
- O.O. Apeh, U.K. Chime, S. Agbo, S. Ezugwu, R. Taziwa, E. Meyer, P. Sutta, M. Maaza, F.I. Ezema, Properties of nanostructured ZnO thin films synthesized using a modified aqueous chemical growth method. Materials Research Express, 6(5), (2019) 056406. https://doi.org/10.1088/2053-1591/aadcd6
- T.M. Razykov, S.Z. Karazhanov, A.Y. Leiderman, N.F. Khusainova, K. Kouchkarov, Effect of the grain boundaries on the conductivity and current transport in II–VI films. Solar energy materials and solar cells, 90(15), (2006) 2255-2262. https://doi.org/10.1016/j.solmat.2006.02.025