Vol. 1 No. 1 (2024): Volume 1, Issue 1, Year 2024
Articles

DC conductivity studies of CuO Nano petals incorporated PMMA Thin Films

Unniyarcha K.K
Department of Physics, Christian College Chengannur, Research Centre- University of Kerala, Kerala-689122, India
Kathirvel P
GRD Centre for Materials Research, Department of Physics, PSG College of Technology, Coimbatore-641004, Tamil Nadu, India
Lakshmi Mohan
Department of Physics, Amrita School of Physical Sciences, Coimbatore, Amrita Vishwa Vidyapeetham, India
Saravanakumar S
Department of Physics, Christian College Chengannur, Research Centre- University of Kerala, Kerala-689122, India

Published 2024-07-30

Keywords

  • CuO nanoparticles,
  • Chemical Precipitation,
  • PMMA,
  • Spin coating

How to Cite

K.K, U., P, K., Mohan, L., & S, S. (2024). DC conductivity studies of CuO Nano petals incorporated PMMA Thin Films. Proceedings of the Asian Research Association, 1(1), 94-101. https://doi.org/10.54392/ara2419

Abstract

CuO nano petals are synthesised by the chemical precipitation method.  XRD, SEM, and TEM are used to accomplish structural and morphological studies. Based on XRD results, the average grain size is calculated to be 12 nm, and the structure of nanoparticles is identified as Monoclinic.  SEM and TEM analyses confirm that the synthesised nanostructure exhibits a nano petal morphology. The optical properties are characterised using UV-vis DRS Spectrophotometer, and the band gap is determined to be 1.3 eV. Three samples of PMMA, each with varying concentrations of CuO (10%, 20% and 30% nano petals) are spin-coated onto pre-cleaned FTO-coated glass substrates. The current-voltage characteristics of the annealed film are studied by the two-point probe method. The film with 10% CuO exhibited better D.C conductivity than the other concentrations.

References

  1. F. Wang, H. Li, Z. Yuan, Y. Sun, F. Chang, H. Deng, A highly sensitive gas sensor based on CuO nanoparticles synthetized via a sol–gel method. RSC advances, 6(83), (2016) 79343-79349. https://doi.org/10.1039/C6RA13876D
  2. P. Sutradhar, M. Saha, D. Maiti, Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. Journal of Nanostructure in Chemistry, 4, (2014) 1-6. https://doi.org/10.1007/s40097-014-0086-1
  3. M. Shahmiri, N.A. Ibrahim, F. Shayesteh, N. Asim, N. Motallebi, Preparation of PVP-coated copper oxide nanosheets as antibacterial and antifungal agents. journal of Materials Research, 28(22), (2013) 3109-3118. https://doi.org/10.1557/jmr.2013.316
  4. A. Pandith, G.K. Jayaprakash, Z.A. ALOthman, Surface-modified CuO nanoparticles for photocatalysis and highly efficient energy storage devices. Environmental Science and Pollution Research, 30(15), (2023) 43320-43330. https://doi.org/10.1007/s11356-023-25131-4
  5. M. Suleiman, M. Mousa, A. Hussein, B. Hammouti, T.B. Hadda, I. Warad, Copper (II)-oxide nanostructures: synthesis, characterizations and their applications-review. Journal of Materials and Environmental Science, 4(5), (2013) 792-797.
  6. Z.N. Kayani, M. Umer, S. Riaz, S. Naseem, Characterization of copper oxide nanoparticles fabricated by the sol–gel method. Journal of Electronic Materials, 44, (2015) 3704-3709. https://doi.org/10.1007/s11664-015-3867-5
  7. M. Outokesh, M. Hosseinpour, S.J. Ahmadi, T. Mousavand, S. Sadjadi, W. Soltanian, Hydrothermal synthesis of CuO nanoparticles: study on effects of operational conditions on yield, purity, and size of the nanoparticles. Industrial & engineering chemistry research, 50(6), (2011) 3540-3554. https://doi.org/10.1021/ie1017089
  8. N. Wongpisutpaisan, P. Charoonsuk, N. Vittayakorn, W. Pecharapa, Sonochemical synthesis and characterization of copper oxide nanoparticles. Energy Procedia, 9, (2011) 404-409. https://doi.org/10.1016/j.egypro.2011.09.044
  9. I.Z. Luna, L.N. Hilary, A.S. Chowdhury, M.A. Gafur, N. Khan, R.A. Khan, Preparation and characterization of copper oxide nanoparticles synthesized via chemical precipitation method. Open Access Library Journal, 2(3), (2015)1-8. https://doi.org/10.4236/oalib.1101409
  10. A. Chauhan, R. Verma, K.M. Batoo, S. Kumari, R. Kalia, R. Kumar, M. Hadi, E.H. Raslan, A. Imran, Structural and optical properties of copper oxide nanoparticles: A study of variation in structure and antibiotic activity. Journal of Materials Research, 36, (2021) 1496-1509. https://doi.org/10.1557/s43578-021-00193-7
  11. W.M. Rangel, R.A.A.B. Santa, H.G. Riella, A facile method for synthesis of nanostructured copper (II) oxide by coprecipitation. Journal of Materials Research and Technology, 9(1), (2020) 994-1004. https://doi.org/10.1016/j.jmrt.2019.11.039
  12. S. El-Sayed, A.M.E. Sayed, Preparation and characterization of CuO/Co3O4/poly (methyl methacrylate) nanocomposites for optical and dielectric applications. Journal of Materials Science: Materials in Electronics, 32(10), (2021) 13719-13737. https://doi.org/10.1007/s10854-021-05949-9
  13. I.H. Hilal, R.H. Jabbar, A.H. Muslime, W.A. Shakir, (2020) Preparation (PMMA/PVA)-copper oxide nanocomposites solar cel. In AIP Conference Proceedings, AIP Publishing.
  14. S. Sathya, P.S. Murthy, A. Das, G.G. Sankar, S. Venkatnarayanan, R. Pandian, M. Doble, V.P. Venugopalan, Marine antifouling property of PMMA nanocomposite films: Results of laboratory and field assessment. International Biodeterioration & Biodegradation, 114, (2016) 57-66. https://doi.org/10.1016/j.ibiod.2016.05.026
  15. U. Holzwarth, N. Gibson, The Scherrer equation versus the'Debye-Scherrer equation'. Nature nanotechnology, 6(9), (2011) 534-534. https://doi.org/10.1038/nnano.2011.145
  16. S. Kose, F. Atay, V. Bilgin, I. Akyuz, Some physical properties of copper oxide films: The effect of substrate temperature. Materials Chemistry and Physics, 111(2-3), (2008) 351-358. https://doi.org/10.1016/j.matchemphys.2008.04.025
  17. M.A. Khan, N. Nayan, M.K. Ahmad, C.F. Soon, Surface study of CuO nanopetals by advanced nanocharacterization techniques with enhanced optical and catalytic properties. Nanomaterials, 10(7), (2020) 1298. https://doi.org/10.3390/nano10071298
  18. R. Nayak, F.A. Ali, D.K. Mishra, D. Ray, V.K. Aswal, S.K. Sahoo, B. Nanda, Fabrication of CuO nanoparticle: An efficient catalyst utilized for sensing and degradation of phenol. Journal of Materials Research and Technology, 9(5), (2020) 11045-11059. https://doi.org/10.1016/j.jmrt.2020.07.100
  19. E. Laghchim, A. Raidou, A. Fahmi, E. Ouabida, M. Fahoume, Exploring the correlation between the bandgap engineering and defect density toward high CTS solar cell efficiency. Materials Today Communications, 37, (2023) 106949. https://doi.org/10.1016/j.mtcomm.2023.106949
  20. O.O. Apeh, U.K. Chime, S. Agbo, S. Ezugwu, R. Taziwa, E. Meyer, P. Sutta, M. Maaza, F.I. Ezema, Properties of nanostructured ZnO thin films synthesized using a modified aqueous chemical growth method. Materials Research Express, 6(5), (2019) 056406. https://doi.org/10.1088/2053-1591/aadcd6
  21. T.M. Razykov, S.Z. Karazhanov, A.Y. Leiderman, N.F. Khusainova, K. Kouchkarov, Effect of the grain boundaries on the conductivity and current transport in II–VI films. Solar energy materials and solar cells, 90(15), (2006) 2255-2262. https://doi.org/10.1016/j.solmat.2006.02.025