Vol. 1 No. 1 (2024): Volume 1, Issue 1, Year 2024
Articles

Electrochemical Properties of Ferrous Nickel Pyrophosphate Thin Film Electrodes for Energy Storage Applications

Nivetha S
Department of Physics, Government Arts College, Udumalpet-642126, Tamil Nadu, India
Prabahar S
Westechpower Management Pvt Ltd, Pune- 411062, Maharastra, India
Karunakaran R.T
Department of Physics, Government Arts College, Udumalpet-642126, Tamil Nadu, India
Narendhera Ganth M
Department of Physics, Government Arts College, Udumalpet-642126, Tamil Nadu, India
Boobalan T
Westechpower Management Pvt Ltd, Pune- 411062, Maharastra, India
Dhinesh T
Department of Physics, M. Kumarasamy College of Engineering (Autonomous), Karur-639113, Tamil Nadu, India

Published 2024-07-30

Keywords

  • Optical properties,
  • Luminescence,
  • CBD,
  • Energy storage

How to Cite

S, N., S, P., R.T, K., M, N. G., T, B., & T, D. (2024). Electrochemical Properties of Ferrous Nickel Pyrophosphate Thin Film Electrodes for Energy Storage Applications. Proceedings of the Asian Research Association, 1(1), 71-86. https://doi.org/10.54392/ara2417

Abstract

The present work deals with the preparation of ferrous nickel pyrophosphate (Fe2Ni2P2O7) thin films via a facile approach namely chemical bath deposition. X-ray diffraction analysis evinces that the prepared Fe2Ni2P2O7 thin films are of monoclinic structure and crystallinity is improved by increase in Fe concentration with a preferential orientation along the (111) direction. Scanning electron microscopy and high-resolution scanning electron microscopy analysis reveal the microsphere like morphology and uniform anchoring of Fe2 on Ni2P2O7 thin film surface, which is favorable for good charge transfer between the electrode and electrolyte interface. The UV-Visible spectroscopy analysis reveals that direct optical band gap of Fe2Ni2P2O7 thin films holds decreasing trend from 3.80 eV to 3.17 eV with increasing amount of Fe from 1M to 3M. Photoluminescence spectroscopy has been employed to study the luminescence properties, with respect to the Fe concentration. The different phonon modes and magnon modes of vibration present in the Fe2Ni2P2O7 film have been studied by Raman spectroscopy. Electrochemical analysis shows that, the Fe2Ni2P2O7 film electrode offers a specific capacitance of 441 F/g with excellent electrochemical and cyclic stability. The studies on Fe2Ni2P2O7 films have yielded promising results enrich express the potentiality for better utilization in energy storage devices.

References

  1. Y. Xiao, A. Zhang, S. Liu, J. Zhao, S. Fang, D. Jia, F. Li, Free-standing and porous hierarchical nanoarchitectures constructed with cobalt cobaltite nanowalls for supercapacitors with high specific capacitances. Journal of Power Sources, 219, (2012) 140-146. https://doi.org/10.1016/j.jpowsour.2012.07.030
  2. H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, Graphene oxide doped polyaniline for supercapacitors. Electrochemistry Communications, 11(6), (2009) 1158-1161. https://doi.org/10.1016/j.elecom.2009.03.036
  3. G. Zhu, C. Xi, Y. Liu, J. Zhu, X. Shen, (2015). CN foam loaded with few-layer graphene nanosheets for high-performance supercapacitor electrodes. Journal of Materials Chemistry A, 3(14), 7591-7599. https://doi.org/10.1039/C5TA00837A
  4. Y. Fu, J. Song, Y. Zhu, C. Cao, High-performance supercapacitor electrode based on amorphous mesoporous Ni (OH) 2 nanoboxes. Journal of Power Sources, 262, (2014) 344-348. https://doi.org/10.1016/j.jpowsour.2014.04.002
  5. T. Brousse, D. Bélanger, J.W. Long, To be or not to be pseudocapacitive?. Journal of The Electrochemical Society, 162(5), (2015) A5185. https://doi.org/10.1149/2.0201505jes
  6. C. Wei, Q. Lu, J. Sun, F. Gao, Evolution of nickel sulfide hollow spheres through topotactic transformation. Nanoscale, 5(24), (2013) 12224-12230. https://doi.org/10.1039/C3NR03371F
  7. M. Cao, T. Liu, S. Gao, G. Sun, X. Wu, C. Hu, Z.L. Wang, Single-crystal dendritic micro-pines of magnetic α-Fe2O3: large-scale synthesis, formation mechanism, and properties. Angewandte Chemie Angewandte Chemie, 44(27), (2005) 4197-4201. https://doi.org/10.1002/ange.200500448
  8. C. Wei, H. Pang, B. Zhang, Q. Lu, S. Liang, F. Gao, Two-dimensional β-MnO2 nanowire network with enhanced electrochemical capacitance. Scientific reports, 3(1), (2013) 2193. https://doi.org/10.1038/srep02193
  9. B. Geng, B. Tao, X. Li, W. Wei, Ni2+/surfactant-assisted route to porous α-Fe2O3 nanoarchitectures. Nanoscale, 4(5), (2012) 1671-1676. https://doi.org/10.1039/c2nr12102f
  10. Y. Ni, K. Liao, J. Hong, X. Wei, (2009). Ni2+ ions assisted hydrothermal synthesis of flowerlike Co11 (HPO3)8(OH)6 superstructures and shape control. CrystEngComm, 11(4), 570-575. https://doi.org/10.1039/b819286c
  11. L. Liao, Q. Cao, H. Liao, Investigation of a hyperbranched polyurethane as a solid-state phase change material. Journal of materials science, 45, (2010) 2436-2441. https://doi.org/10.1007/s10853-010-4211-3
  12. H. Pang, Y. Liu, J. Li, Y. Ma, G. Li, Y. Ai, J. Chen, J. Zhang, H. Zheng, Cobalt phosphite microarchitectures assembled by ultralong nanoribbons and their application as effective electrochemical capacitor electrode materials. Nanoscale, 5(2), (2013) 503-507. https://doi.org/10.1039/C2NR32597G
  13. X. Li, S. Xiong, J. Li, J. Bai, Y. Qian, Mesoporous NiO ultrathin nanowire networks topotactically transformed from α-Ni (OH) 2 hierarchical microspheres and their superior electrochemical capacitance properties and excellent capability for water treatment. Journal of Materials Chemistry, 22(28), (2012) 14276-14283. https://doi.org/10.1039/c2jm32559d
  14. J. Zhu, Z. Yin, D. Yang, T. Sun, H. Yu, H.E. Hoster, H.H. Hng, H. Zhang, Q. Yan, Hierarchical hollow spheres composed of ultrathin Fe2O3 nanosheets for lithium storage and photocatalytic water oxidation. Energy & Environmental Science, 6(3), (2013) 987-993. https://doi.org/10.1039/c2ee24148j
  15. A. Pan, T. Zhu, H.B. Wu, X.W. Lou, Template‐Free Synthesis of Hierarchical Vanadium‐Glycolate Hollow Microspheres and Their Conversion to V2O5 with Improved Lithium Storage Capability. Chemistry–A European Journal, 19(2), (2013) 494-500. https://doi.org/10.1002/chem.201203596
  16. S.J. Marje, P.K. Katkar, S.S. Pujari, S.A. Khalate, P.R. Deshmukh, U.M. Patil, (2020). Effect of phosphate (anion) precursor on structural and morphology behavior of nickel phosphate thin films and its supercapacitive performance. Materials Science and Engineering: B, 261, 114641. https://doi.org/10.1016/j.mseb.2020.114641
  17. M. Liu, J. Li, W. Han, L. Kang, Simple synthesis of novel phosphate electrode materials with unique microstructure and enhanced supercapacitive properties. Journal of energy chemistry, 25(4), (2016) 601-608. https://doi.org/10.1016/j.jechem.2016.03.002
  18. J. Theerthagiri, K. Thiagarajan, B. Senthilkumar, Z. Khan, R.A. Senthil, P. Arunachalam, J. Madhavan, M. Ashokkumar, Synthesis of hierarchical cobalt phosphate nanoflakes and their enhanced electrochemical performances for supercapacitor applications. ChemistrySelect, 2(1), (2017) 201-210. https://doi.org/10.1002/slct.201601628
  19. B. Senthilkumar, Z. Khan, S. Park, K. Kim, H. Ko, Y. Kim, Highly porous graphitic carbon and Ni2P2O7 for a high performance aqueous hybrid supercapacitor. Journal of Materials Chemistry A, 3(43), (2015) 21553-21561. https://doi.org/10.1039/C5TA04737D
  20. T.N. Lambert, D.J. Davis, W. Lu, S.J. Limmer, P.G. Kotula, A. Thuli, M. Hungate, G. Ruan, Z. Jin, J.M. Tour, Graphene–Ni–α-MnO2 and –Cu–α-MnO2nanowire blends as highly active non-precious metal catalysts for the oxygen reduction reaction. Chemical Communications, 48(64), (2012) 7931-7933. https://doi.org/10.1039/c2cc32971a
  21. A. Anis Fathima, S. Nivetha, S. Prabahar, S. Srikanth, R.T. Karunakaran, U. Karunanithi, M. Narendhera Ganth, Optical Study of Copper Zinc Tin Sulfide Thin Films by Chemical Bath Deposition Technique. International Journal for Research in Applied Science & Engineering, 9(3), (2021) 242-245.
  22. J. Yang, C. Zheng, P. Xiong, Y. Li, M. Wei, (2014). Zn-doped Ni-MOF material with a high supercapacitive performance. Journal of Materials Chemistry A, 2(44), 19005-19010. https://doi.org/10.1039/C4TA04346D
  23. B.V. Krishna, S.K. Hussain, J.S. Yu, (2021). Three-dimensional flower-like nickel doped cobalt phosphate hydrate microarchitectures for asymmetric supercapacitors. Journal of Colloid and Interface Science, 592, 145-155. https://doi.org/10.1016/j.jcis.2021.02.040
  24. C. Wei, S. Yang, W. Liu, X. Hou, Y. Sun, J. Zhao, W. Xiong, C. Cheng, D. Zhang, 2019. Hierarchically porous bowknot-like sodium doped Ni2P2O7-Co2P2O7 with improved supercapacitor performances. Applied Surface Science, 465, 763-771. https://doi.org/10.1016/j.apsusc.2018.09.223
  25. P. Matheswaran, P. Karuppiah, S.M. Chen, P. Thangavelu, B. Ganapathi, Fabrication of g-C3N4 nanomesh-anchored amorphous NiCoP2O7: tuned cycling life and the dynamic behavior of a hybrid capacitor. ACS omega, 3(12), (2018) 18694-18704. https://doi.org/10.1021/acsomega.8b02635
  26. J.K. Warner, A.K. Cheetham, D.E. Cox, Determination of the cation distribution in NiFe2 (PO4)2 using resonant X-ray and neutron powder diffraction. Journal of applied crystallography, 28(5), (1995) 494-502.
  27. S. Nivetha, S. Prabahar, R.T. Karunakaran, M.N. Ganth, S. Dhinesh, Synthesis and characterization of Ni2P2O7 thin film as a superior electrode material for high performance supercapacitors. Ionics, 29(3), (2023) 1209-1219. https://doi.org/10.1007/s11581-023-04885-4
  28. S. Prabahar, M. Dhanam, CdS thin films from two different chemical baths-structural and optical analysis. Journal of Crystal growth, 285(1-2), (2005) 41-48. https://doi.org/10.1016/j.jcrysgro.2005.08.008
  29. Y. Liu, Y.X. Yu, W.D. Zhang, (2012). Photoelectrochemical properties of Ni-doped Fe2O3 thin films prepared by electrodeposition. Electrochimica acta, 59, 121-127. https://doi.org/10.1016/j.electacta.2011.10.051
  30. F.S. Omar, A. Numan, S. Bashir, N. Duraisamy, R. Vikneswaran, Y.L. Loo, K. Ramesh, S. Ramesh, Enhancing rate capability of amorphous nickel phosphate supercapattery electrode via composition with crystalline silver phosphate. Electrochimica Acta, 273, (2018) 216-228. https://doi.org/10.1016/j.electacta.2018.03.136
  31. M. Priyadharshini, T. Pazhanivel, G. Bharathi, Carbon quantum dot incorporated nickel pyrophosphate as alternate cathode for supercapacitors. ChemistrySelect, 5(8), (2020) 2643-2652. https://doi.org/10.1002/slct.201904334
  32. S. Dhinesh, M. Priyadharshini, T. Pazhanivel, R. Gobi, Biomass-derived N, S self-doped activated carbon embedded MnO2 as cathode for supercapacitor.Materials Technology, 37(11), (2022) 1837-1845. https://doi.org/10.1080/10667857.2021.1990458
  33. S. Nivetha, S. Prabahar, R.T. Karunakaran, M.N. Ganth, T. Boobalan, S. Dhinesh, Improved Electrochemical Performance of Ni2P2O7 and Mn-doped Ni2P2O7 Electrode Materials for Supercapacitor Applications. ChemistrySelect, 8(20), (2023), e202300535. https://doi.org/10.1002/slct.202300535
  34. S. Dhinesh, M. Priyadharshini, T. Pazhanivel, R. Gobi, Biomass-derived N, S self-doped activated carbon embedded MnO2 as cathode for supercapacitor. Materials Technology, 37(11), (2022) 1837-1845. https://doi.org/10.1021/acs.chemmater.6b01522
  35. C.R. Dhas, R. Venkatesh, R. Sivakumar, A.M.E. Raj, C.J.O.M. Sanjeeviraja, Effect of solution molarity on optical dispersion energy parameters and electrochromic performance of Co3O4 films.Optical Materials, 72, (2017) 717-729. https://doi.org/10.1016/j.optmat.2017.07.026
  36. S. Nivetha, S. Prabahar, R.T. Karunakaran, M. Narendhera Ganth, S. Dhinesh, Ni2P2O7 Thin Film Electrode for High Performance Supercapacitor Applications. International Journal for Research in Applied Science & Engineering Technology, 11(7), (2023), 979-982. https://doi.org/10.22214/ijraset.2023.54766
  37. Y. Zhao, H. Wang, C. Wu, Z.F. Shi, F.B. Gao, W.C. Li, G.G. Wu, B.L. Zhang, G.T. Du, Structures, electrical and optical properties of nickel oxide films by radio frequency magnetron sputtering. Vacuum, 103, (2014) 14-16. https://doi.org/10.1016/j.vacuum.2013.11.009
  38. R. Murugesan, S. Sivakumar, K. Karthik, P. Anandan, M. Haris, Structural, optical and magnetic behaviors of Fe/Mn-doped and co-doped CdS thin films prepared by spray pyrolysis method. Applied Physics A, 125, (2019) 1-13. https://doi.org/10.1007/s00339-019-2577-x
  39. S. Narayanan, J.J. Vijaya, T. Adinaveen, M. Bououdina, L.J. Kennedy, Synthesis of α-Fe2O3 sphere/rod-like nanostructure via simple surfactant-free precipitation route: optical properties and formation mechanism. Journal of Nanoscience and Nanotechnology, 15(6), (2015) 4558-4566. https://doi.org/10.1166/jnn.2015.9614
  40. M.N. Ganth, S. Prabahar, R.T. Karunakaran, S. Nivetha, S. Dhinesh, Facile synthesis of cobalt phosphate electrode material for enhanced electrochemical supercapacitor applications. Ionics, 29(8), (2023) 3261-3271. https://doi.org/10.1007/s11581-023-05065-0
  41. Y.M. Lai, X.F. Liang, S.Y. Yang, J.X. Wang, B.T. Zhang, Raman spectra study of iron phosphate glasses with sodium sulfate. Journal of Molecular Structure, 1013, (2012) 134-137. https://doi.org/10.1016/j.molstruc.2012.01.025
  42. Y.M. Lai, X.F. Liang, S.Y. Yang, J.X. Wang, L.H. Cao, B. Dai, Raman and FTIR spectra of iron phosphate glasses containing cerium. Journal of Molecular Structure, 992(1-3), (2011) 84-88. https://doi.org/10.1016/j.molstruc.2011.02.049
  43. P. Stoch, W. Szczerba, W. Bodnar, M. Ciecinska, A. Stoch, E. Burkel, Structural properties of iron-phosphate glasses: spectroscopic studies and ab initio simulations. Physical Chemistry Chemical Physics, 16(37), (2014) 19917-19927. https://doi.org/10.1039/C4CP03113J
  44. S. Nivetha, S. Prabahar, R.T. Karunakaran, M.N. Ganth, S. Dhinesh, Effect of Fe dopant concentration on electrochemical properties of Ni2P2O7 thin films. Inorganic Chemistry Communications, 146, (2022) 110193. https://doi.org/10.1016/j.inoche.2022.110193
  45. C. Wei, C. Cheng, S. Wang, Y. Xu, J. Wang, H. Pang, Sodium‐doped mesoporous Ni2P2O7 hexagonal tablets for high‐performance flexible all‐solid‐state hybrid supercapacitors. Chemistry–An Asian Journal, 10(8), (2015) 1731-1737. https://doi.org/10.1002/asia.201500335
  46. J. Yan, W. Sun, T. Wei, Q. Zhang, Z. Fan, F. Wei, Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. Journal of Materials Chemistry, 22(23), (2012) 11494-11502. https://doi.org/10.1039/c2jm30221g
  47. S. Nivetha, S. Prabahar, R.T. Karunakaran, M.N. Ganth, S. Dhinesh, Synthesis and characterization of Ni2P2O7 thin film as a superior electrode material for high performance supercapacitors. Ionics, 29(3), (2023) 1209-1219. https://doi.org/10.1007/s11581-023-04885-4
  48. S. Kaipannan, S. Marappan, Fabrication of 9.6 V High-performance Asymmetric Supercapacitors Stack Based on Nickel Hexacyanoferrate-derived Ni(OH)2 Nanosheets and Bio-derived Activated Carbon. Scientific Reports, 9(2019), 1104. https://doi.org/10.1038/s41598-018-37566-8