Vol. 1 No. 1 (2024): Volume 1, Issue 1, Year 2024
Articles

A Comprehensive Review on Enhancement of Sensitivity of Spin Diode

Rishma Thilakaraj
Department of Physics, PSG College of Technology, Coimbatore, Tamil Nadu-641004, India
Kanimozhi Natarajan
Department of Physics, PSG College of Technology, Coimbatore, Tamil Nadu-641004, India.
Amuda Rajamani
Department of Physics, PSG College of Technology, Coimbatore, Tamil Nadu-641004, India.
Brinda Arumugam
Department of Physics, PSG College of Technology, Coimbatore, Tamil Nadu-641004, India.

Published 2024-07-30

Keywords

  • Spin diode,
  • Spintronics,
  • Sensitivity,
  • Resonant frequency

How to Cite

Thilakaraj, R., Natarajan, K., Rajamani, A., & Arumugam, B. (2024). A Comprehensive Review on Enhancement of Sensitivity of Spin Diode. Proceedings of the Asian Research Association, 1(1), 45-56. https://doi.org/10.54392/ara2415

Abstract

Spintronics, a branch of electronics that uses the quantum property of electron spin has been widely developing nowadays. Spin diode technology is a part of this emerging trend that shows better performance beyond the traditional semiconductor diodes in certain parameters. This review focuses on the spin diodes with a primary objective of studying the enhancement in the sensitivity of these devices to be used in various applications including memory devices, sensors and advanced computing. The review covers the basic principle of spin diode, its historical development, working, methods to enhance sensitivity and studies on its resonant frequency. The key mechanisms like Spin Transfer Torque (STT) and Giant Magnetoresistance (GMR) were also given importance. Additionally, the study covers the various techniques used to analyze the performance of spin diode and its practical limitations. Overall, the work is made to provide a better understanding of the present scenario and future potential of the spin diode technology and suggest better ways to enhance the sensitivity of the device for real time applications.

References

  1. G. Finocchio, R. Tomasello, B. Fang, A. Giordano, V. Puliafito, M. Carpentieri, Z. Zeng, Perspectives on spintronic diodes, Applied Physics Letters, 118 (2021). https://doi.org/10.1063/5.0048947
  2. L. Zhang, H. Tu, Y. Luo, K. Zeng, X. Tao, D. Zhao, B. Fang, Z. Zeng, Ultralow-current density spin-torque diodes with high sensitivity, Applied Physics Letters, 122 (2023). https://doi.org/10.1063/5.0141113
  3. S. Hemour, Y. Zhao, C.H.P. Lorenz, D. Houssameddine, Y. Gui, C.M. Hu, K. Wu, Towards low-power high-efficiency RF and microwave energy harvesting, IEEE Transactions on Microwave Theory and Techniques, 62 (2014) 965–976. https://doi.org/10.1109/TMTT.2014.2305134
  4. P.N. Skirdkov, K.A. Zvezdin, Spin-Torque Diodes: From Fundamental Research to Applications, Annals of Physics, 532 (2020). https://doi.org/10.1002/andp.201900460
  5. C. Chappert, A. Fert, F.N. Van Dau, The emergence of spin electronics in data storage, Nature Materials, 6 (2007) 813–823. https://doi.org/10.1038/nmat2024
  6. A. Hirohata, K. Yamada, Y. Nakatani, L. Prejbeanu, B. Diény, P. Pirro, B. Hillebrands, Review on spintronics: Principles and device applications. Journal of Magnetism and Magnetic Materials, 509 (2020). https://doi.org/10.1016/j.jmmm.2020.166711
  7. P. Barla, V.K. Joshi, S. Bhat, Spintronic devices: a promising alternative to CMOS devices. Journal of Computational Electronics, 20 (2021) 805–837. https://doi.org/10.1007/s10825-020-01648-6
  8. J. Puebla, J. Kim, K. Kondou, Y. Otani, Spintronic devices for energy-efficient data storage and energy harvesting, Communications Materials, 1 (2020). https://doi.org/10.1038/s43246-020-0022-5
  9. T. Taniguchi, H. Imamura, Dependence of spin torque diode voltage on applied field direction, Journal of Applied Physics, 114 (2013). https://doi.org/10.1063/1.4817281
  10. T. Taniguchi, H. Imamura, Maximizing spin torque diode voltage by optimizing magnetization alignment, Applied Physics Express 6 (2013). https://doi.org/10.7567/APEX.6.053002
  11. T. Sleator, T. Pfau, V. Balykin, O. Carnal, and J. Mlynek, Experimental demonstration of the optical Stern-Gerlach effect, In International Quantum Electronics Conference, p. ThF5. Optica Publishing Group, 1992. https://opg.optica.org/abstract.cfm?URI=IQEC-1992-ThF5
  12. S.M. Thompson, The discovery, development and future of GMR: The Nobel Prize 2007, Journal of Physics D: Applied Physics, 41 (2008). https://doi.org/10.1088/0022-3727/41/9/093001
  13. D. Samal, P.S. Anil Kumar, Giant magnetoresistance, Resonance 13 (2008) 343–354. https://doi.org/10.1007/s12045-008-0015-z
  14. L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Physical Review B, 54(13) (1996) 9353. https://doi.org/10.1103/PhysRevB.54.9353
  15. J.C. Slonczewski, Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 159(1-2), (1996) L1-L7. https://doi.org/10.1016/0304-8853(96)00062-5
  16. F.C. Rong, W.R. Buchwald, E.H. Poindexter, W.L. Warren, and D.J. Keeble, Spin-dependent Shockley-Read recombination of electrons and holes in indirect-band-gap semiconductor pn junction diodes. Solid-state electronics, 34(8) (1991) 835-841. https://doi.org/10.1016/0038-1101(91)90229-R
  17. E.Y. Tsymbal, O.N. Mryasov, P.R. LeClair, Spin-dependent tunnelling in magnetic tunnel junctions. Journal of Physics Condensed Matter, 15 (2003). https://doi.org/10.1088/0953-8984/15/4/201 .
  18. J.C. Slonczewski, Currents, torques, and polarization factors in magnetic tunnel junctions, Physical Review B, 71 (2005). https://doi.org/10.1103/PhysRevB.71.024411
  19. A. Hirohata, H. Sukegawa, H. Yanagihara, I. Zutic, T. Seki, S. Mizukami, R. Swaminathan, Roadmap for Emerging Materials for Spintronic Device Applications, IEEE Transactions on Magnetics, 51 (2015). https://doi.org/10.1109/TMAG.2015.2457393
  20. X. Peng, Z. Zhang, Electrically tunable spin diode effect in a tunneling junction of quantum dot, Chinese Physics B 28 (2019). https://doi.org/10.1088/1674-1056/ab53d0
  21. E.R., and Y.S.J. Hedin, Spintronics in nanoscale devices, 1st ed., CRC Press, 2013, Newyork, n.d.
  22. A.A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D.D. Djayaprawira, N. Watanabe, S. Yuasa, Spin-torque diode effect in magnetic tunnel junctions, Nature 438 (2005) 339–342. https://doi.org/10.1038/nature04207
  23. D.C. Ralph, M.D. Stiles, Spin transfer torques, Journal of Magnetism and Magnetic Materials, 320 (2008) 1190–1216. https://doi.org/10.1016/j.jmmm.2007.12.019
  24. C. Baraduc, M. Chshiev, U. Ebels, Introduction to spin transfer torque, in: Nanomagnetism and Spintronics: Fabrication, Materials, Characterization and Applications, World Scientific Publishing Co., (2010) 173–192. https://doi.org/10.1142/9789814273060_0008
  25. R. Tomasello, M. Carpentieri, G. Finocchio, Dynamical properties of three terminal magnetic tunnel junctions: Spintronics meets spin-orbitronics, Applied Physics Letters, 103 (2013). https://doi.org/10.1063/1.4851939
  26. W. Zhang, M.B. Jungfleisch, W. Jiang, J. Sklenar, F.Y. Fradin, J.E. Pearson, J.B. Ketterson, A. Hoffmann, Spin pumping and inverse spin Hall effects - Insights for future spin-orbitronics (invited), Journal of Applied Physics, 117 (2015). https://doi.org/10.1063/1.4913887
  27. L.U. Baňas, 2004, June. Numerical methods for the Landau-Lifshitz-Gilbert equation. In International Conference on Numerical Analysis and Its Applications (pp. 158-165). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-31852-1_17
  28. C. Serpico, I.D. Mayergoyz, G. Bertotti, Numerical technique for integration of the Landau-Lifshitz equation, Journal of Applied Physics, 89 (2001) 6991–6993. https://doi.org/10.1063/1.1358818
  29. D. Kumar, O. Dmytriiev, S. Ponraj, A. Barman, Numerical calculation of spin wave dispersions in magnetic nanostructures, Journal of Physics D: Applied Physics, 45 (2012). https://doi.org/10.1088/0022-3727/45/1/015001
  30. G.V. Chalapathi, M. Thaidun, D. Subramanyam, B.S. Rao, C. Balanarayana, and B.R. Kumar, Synthesis and characterization of Fe doped CdSe nanoparticles for spintronic devices. Chalcogenide Letters, 12(4) (2015) 181-190.
  31. S. Majumdar, S. Van Dijken, Pulsed laser deposition of La1-xSrxMnO3: Thin-film properties and spintronic applications, Journal of Physics D: Applied Physics, 47 (2014). https://doi.org/10.1088/0022-3727/47/3/034010
  32. S.R. Sani, J. Persson, A. Dmitriev, M. Käll, J. Åkerman, Hole mask colloidal lithography on magnetic multilayers for spin torque applications, Journal of Physics: Conference Series, 2010. https://doi.org/10.1088/1742-6596/200/7/072078
  33. D. Kumar, A.O. Adeyeye, Techniques in micromagnetic simulation and analysis, Journal of Physics D: Applied Physics 50 (2017). https://doi.org/10.1088/1361-6463/aa7c04
  34. A. Vansteenkiste, B. Van De Wiele, MUMAX: A new high-performance micromagnetic simulation tool, Journal of Magnetism and Magnetic Materials, 323 (2011) 2585–2591. https://doi.org/10.1016/j.jmmm.2011.05.037
  35. J. Mojsiejuk, S. Ziętek, K. Grochot, W. Skowroński, and T. Stobiecki, cmtj: Simulation package for analysis of multilayer spintronic devices. NPJ Computational Materials, 9(1) (2023) 54. https://doi.org/10.1038/s41524-023-01002-x
  36. L. Zhang, B. Fang, J. Cai, M. Carpentieri, V. Puliafito, F. Garescì, P.K. Amiri, G. Finocchio, Z. Zeng, Ultrahigh detection sensitivity exceeding 105 V/W in spin-torque diode, Applied Physics Letters, 113 (2018). https://doi.org/10.1063/1.5047547
  37. P.N. Skirdkov, A.F. Popkov, K.A. Zvezdin, Vortex spin-torque diode: The impact of DC bias, Applied Physics Letters, 113 (2018). https://doi.org/10.1063/1.5064440
  38. A.A. Khudorozhkov, P.N. Skirdkov, K.A. Zvezdin, P.M. Vetoshko, A.F. Popkov, Spin-torque diode frequency tuning via soft exchange pinning of both magnetic layers, Physical Review B, 96 (2017). https://doi.org/10.1103/PhysRevB.96.214410
  39. N. Sisodia, P.K. Muduli, Simultaneous enhancement of spin-torque diode sensitivity and frequency by voltage controlled magnetic anisotropy and parametric synchronization. Applied Physics Letters 115(10), (2019) 102401. https://doi.org/10.1063/1.5121915
  40. C. Wang, Y.T. Cui, J.Z. Sun, J.A. Katine, R.A. Buhrman, D.C. Ralph, Sensitivity of spin-torque diodes for frequency-tunable resonant microwave detection, Journal of Applied Physics, 106 (2009). https://doi.org/10.1063/1.3197137
  41. R. Tomasello, B. Fang, P. Artemchuk, M. Carpentieri, L. Fasano, A. Giordano, O. V. Prokopenko, Z.M. Zeng, G. Finocchio, Low-frequency nonresonant rectification in spin diodes, Physical Review Applied,14 (2020). https://doi.org/10.1103/PhysRevApplied.14.024043
  42. D.R. Rodrigues, R. Tomasello, G. Siracusano, M. Carpentieri, G. Finocchio, Ultra-sensitive voltage-controlled skyrmion-based spintronic diode, Nanotechnology 34 (2023). https://doi.org/10.1088/1361-6528/acdad6
  43. S. Ishibashi, K. Ando, T. Seki, T. Nozaki, H. Kubota, S. Yakata, H. Maehara, A. Fukushima, S. Yuasa, Y. Suzuki, High spin-torque diode sensitivity in CoFeB/MgO/CoFeB magnetic tunnel junctions under DC bias currents, IEEE Transactions on Magnetics, 47 (2011) 3373–3376. https://doi.org/10.1109/TMAG.2011.2159830
  44. S. Miwa, S. Ishibashi, H. Tomita, T. Nozaki, E. Tamura, K. Ando, N. Mizuochi, T. Saruya, H. Kubota, K. Yakushiji, T. Taniguchi, H. Imamura, A. Fukushima, S. Yuasa, Y. Suzuki, Highly sensitive nanoscale spin-torque diode, Nature Materials, 13 (2014) 50–56. https://doi.org/10.1038/nmat3778
  45. D. Tiwari, N. Sisodia, R. Sharma, P. Dürrenfeld, J. Åkerman, P.K. Muduli, Enhancement of spin-torque diode sensitivity in a magnetic tunnel junction by parametric synchronization, Applied Physics Letters, 108 (2016). https://doi.org/10.1063/1.4942398
  46. B. Fang, M. Carpentieri, X. Hao, H. Jiang, J.A. Katine, I.N. Krivorotov, B. Ocker, J. Langer, K.L. Wang, B. Zhang, B. Azzerboni, P.K. Amiri, G. Finocchio, Z. Zeng, Giant spin-torque diode sensitivity in the absence of bias magnetic field, Nature Communications, 7 (2016). https://doi.org/10.1038/ncomms11259
  47. A.S. Jenkins, R. Lebrun, E. Grimaldi, S. Tsunegi, P. Bortolotti, H. Kubota, K. Yakushiji, A. Fukushima, G. De Loubens, O. Klein, S. Yuasa, V. Cros, Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme, Nature Nanotechnology, 11 (2016) 360–364. https://doi.org/10.1038/nnano.2015.295
  48. W. Skowroński, M. Frankowski, J. Wrona, T. Stobiecki, P. Ogrodnik, J. Barnaś, Spin-torque diode radio-frequency detector with voltage tuned resonance, Applied Physics Letters, 105 (2014). https://doi.org/10.1063/1.4893463
  49. S. Sundara Mahalingam, B. V. Manikandan, S. Arockiaraj, Review - Micromagnetic Simulation Using OOMMF and Experimental Investigations on Nano Composite Magnets, Journal of Physics: Conference Series, Institute of Physics Publishing, 2019. https://doi.org/10.1088/1742-6596/1172/1/012070
  50. R. Tomasello, M. Carpentieri, and G. Finocchio, Influence of the Dzyaloshinskii-Moriya interaction on the spin-torque diode effect. Journal of Applied Physics, 115(17) (2014). https://doi.org/10.1063/1.4867750
  51. S.K. Joshi, Spintronics and quantum computation. Indian Journal of Physics, 78 (2004) 299-308.
  52. W.A. Coish, and D. Loss, Quantum computing with spins in solids. Handbook of Magnetism and Advanced Magnetic Materials. (2007). https://doi.org/10.1002/9780470022184.hmm512
  53. R.H. Caverly, RF Aspects of High-Field Magnetic Resonance Imaging (HF-MRI): Recent Advances, IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 3 (2019), 111–119. https://doi.org/10.1109/JERM.2018.2879396
  54. X. Zhang, J. Grajal, M. López-Vallejo, E. McVay, and T. Palacios, Opportunities and challenges of ambient radio-frequency energy harvesting. Joule, 4(6) (2020) 1148-1152. https://doi.org/10.1016/j.joule.2020.05.006
  55. I. Bendjeddou, A. Sidi El Valli, A. Litvinenko, Y. Le Guennec, F. Podevin, S. Bourdel, E. Pistono, D. Morche, A. Jenkins, R. Ferreira, M. Jotta Garcia, R. Lebrun, V. Cros, P. Bortolotti, U. Ebels, Radio Receivers based on Spin-Torque Diodes as Energy Detectors, in: 2021 19th IEEE International New Circuits and Systems Conference, NEWCAS 2021, Institute of Electrical and Electronics Engineers Inc., 2021. https://doi.org/10.1109/NEWCAS50681.2021.9462731
  56. R. Sharma, R. Mishra, T. Ngo, Y.X. Guo, S. Fukami, H. Sato, H. Ohno, H. Yang, Electrically connected spin-torque oscillators array for 2.4 GHz WiFi band transmission and energy harvesting, Nature Communications, 12 (2021). https://doi.org/10.1038/s41467-021-23181-1
  57. J. Grollier, D. Querlioz, K.Y. Camseri, K. Everschor-Sitte, S. Fukami, M.D Stiles, Spintronics for neuromorphic computing. arXiv preprint arXiv: 2007.06092 (2020).