Published 2024-07-30
Keywords
- Spin diode,
- Spintronics,
- Sensitivity,
- Resonant frequency
Copyright (c) 2024 Rishma Thilakaraj, Kanimozhi Natarajan, Amuda Rajamani, Brinda Arumugam (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
Spintronics, a branch of electronics that uses the quantum property of electron spin has been widely developing nowadays. Spin diode technology is a part of this emerging trend that shows better performance beyond the traditional semiconductor diodes in certain parameters. This review focuses on the spin diodes with a primary objective of studying the enhancement in the sensitivity of these devices to be used in various applications including memory devices, sensors and advanced computing. The review covers the basic principle of spin diode, its historical development, working, methods to enhance sensitivity and studies on its resonant frequency. The key mechanisms like Spin Transfer Torque (STT) and Giant Magnetoresistance (GMR) were also given importance. Additionally, the study covers the various techniques used to analyze the performance of spin diode and its practical limitations. Overall, the work is made to provide a better understanding of the present scenario and future potential of the spin diode technology and suggest better ways to enhance the sensitivity of the device for real time applications.
References
- G. Finocchio, R. Tomasello, B. Fang, A. Giordano, V. Puliafito, M. Carpentieri, Z. Zeng, Perspectives on spintronic diodes, Applied Physics Letters, 118 (2021). https://doi.org/10.1063/5.0048947
- L. Zhang, H. Tu, Y. Luo, K. Zeng, X. Tao, D. Zhao, B. Fang, Z. Zeng, Ultralow-current density spin-torque diodes with high sensitivity, Applied Physics Letters, 122 (2023). https://doi.org/10.1063/5.0141113
- S. Hemour, Y. Zhao, C.H.P. Lorenz, D. Houssameddine, Y. Gui, C.M. Hu, K. Wu, Towards low-power high-efficiency RF and microwave energy harvesting, IEEE Transactions on Microwave Theory and Techniques, 62 (2014) 965–976. https://doi.org/10.1109/TMTT.2014.2305134
- P.N. Skirdkov, K.A. Zvezdin, Spin-Torque Diodes: From Fundamental Research to Applications, Annals of Physics, 532 (2020). https://doi.org/10.1002/andp.201900460
- C. Chappert, A. Fert, F.N. Van Dau, The emergence of spin electronics in data storage, Nature Materials, 6 (2007) 813–823. https://doi.org/10.1038/nmat2024
- A. Hirohata, K. Yamada, Y. Nakatani, L. Prejbeanu, B. Diény, P. Pirro, B. Hillebrands, Review on spintronics: Principles and device applications. Journal of Magnetism and Magnetic Materials, 509 (2020). https://doi.org/10.1016/j.jmmm.2020.166711
- P. Barla, V.K. Joshi, S. Bhat, Spintronic devices: a promising alternative to CMOS devices. Journal of Computational Electronics, 20 (2021) 805–837. https://doi.org/10.1007/s10825-020-01648-6
- J. Puebla, J. Kim, K. Kondou, Y. Otani, Spintronic devices for energy-efficient data storage and energy harvesting, Communications Materials, 1 (2020). https://doi.org/10.1038/s43246-020-0022-5
- T. Taniguchi, H. Imamura, Dependence of spin torque diode voltage on applied field direction, Journal of Applied Physics, 114 (2013). https://doi.org/10.1063/1.4817281
- T. Taniguchi, H. Imamura, Maximizing spin torque diode voltage by optimizing magnetization alignment, Applied Physics Express 6 (2013). https://doi.org/10.7567/APEX.6.053002
- T. Sleator, T. Pfau, V. Balykin, O. Carnal, and J. Mlynek, Experimental demonstration of the optical Stern-Gerlach effect, In International Quantum Electronics Conference, p. ThF5. Optica Publishing Group, 1992. https://opg.optica.org/abstract.cfm?URI=IQEC-1992-ThF5
- S.M. Thompson, The discovery, development and future of GMR: The Nobel Prize 2007, Journal of Physics D: Applied Physics, 41 (2008). https://doi.org/10.1088/0022-3727/41/9/093001
- D. Samal, P.S. Anil Kumar, Giant magnetoresistance, Resonance 13 (2008) 343–354. https://doi.org/10.1007/s12045-008-0015-z
- L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Physical Review B, 54(13) (1996) 9353. https://doi.org/10.1103/PhysRevB.54.9353
- J.C. Slonczewski, Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 159(1-2), (1996) L1-L7. https://doi.org/10.1016/0304-8853(96)00062-5
- F.C. Rong, W.R. Buchwald, E.H. Poindexter, W.L. Warren, and D.J. Keeble, Spin-dependent Shockley-Read recombination of electrons and holes in indirect-band-gap semiconductor pn junction diodes. Solid-state electronics, 34(8) (1991) 835-841. https://doi.org/10.1016/0038-1101(91)90229-R
- E.Y. Tsymbal, O.N. Mryasov, P.R. LeClair, Spin-dependent tunnelling in magnetic tunnel junctions. Journal of Physics Condensed Matter, 15 (2003). https://doi.org/10.1088/0953-8984/15/4/201 .
- J.C. Slonczewski, Currents, torques, and polarization factors in magnetic tunnel junctions, Physical Review B, 71 (2005). https://doi.org/10.1103/PhysRevB.71.024411
- A. Hirohata, H. Sukegawa, H. Yanagihara, I. Zutic, T. Seki, S. Mizukami, R. Swaminathan, Roadmap for Emerging Materials for Spintronic Device Applications, IEEE Transactions on Magnetics, 51 (2015). https://doi.org/10.1109/TMAG.2015.2457393
- X. Peng, Z. Zhang, Electrically tunable spin diode effect in a tunneling junction of quantum dot, Chinese Physics B 28 (2019). https://doi.org/10.1088/1674-1056/ab53d0
- E.R., and Y.S.J. Hedin, Spintronics in nanoscale devices, 1st ed., CRC Press, 2013, Newyork, n.d.
- A.A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kubota, H. Maehara, K. Tsunekawa, D.D. Djayaprawira, N. Watanabe, S. Yuasa, Spin-torque diode effect in magnetic tunnel junctions, Nature 438 (2005) 339–342. https://doi.org/10.1038/nature04207
- D.C. Ralph, M.D. Stiles, Spin transfer torques, Journal of Magnetism and Magnetic Materials, 320 (2008) 1190–1216. https://doi.org/10.1016/j.jmmm.2007.12.019
- C. Baraduc, M. Chshiev, U. Ebels, Introduction to spin transfer torque, in: Nanomagnetism and Spintronics: Fabrication, Materials, Characterization and Applications, World Scientific Publishing Co., (2010) 173–192. https://doi.org/10.1142/9789814273060_0008
- R. Tomasello, M. Carpentieri, G. Finocchio, Dynamical properties of three terminal magnetic tunnel junctions: Spintronics meets spin-orbitronics, Applied Physics Letters, 103 (2013). https://doi.org/10.1063/1.4851939
- W. Zhang, M.B. Jungfleisch, W. Jiang, J. Sklenar, F.Y. Fradin, J.E. Pearson, J.B. Ketterson, A. Hoffmann, Spin pumping and inverse spin Hall effects - Insights for future spin-orbitronics (invited), Journal of Applied Physics, 117 (2015). https://doi.org/10.1063/1.4913887
- L.U. Baňas, 2004, June. Numerical methods for the Landau-Lifshitz-Gilbert equation. In International Conference on Numerical Analysis and Its Applications (pp. 158-165). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-31852-1_17
- C. Serpico, I.D. Mayergoyz, G. Bertotti, Numerical technique for integration of the Landau-Lifshitz equation, Journal of Applied Physics, 89 (2001) 6991–6993. https://doi.org/10.1063/1.1358818
- D. Kumar, O. Dmytriiev, S. Ponraj, A. Barman, Numerical calculation of spin wave dispersions in magnetic nanostructures, Journal of Physics D: Applied Physics, 45 (2012). https://doi.org/10.1088/0022-3727/45/1/015001
- G.V. Chalapathi, M. Thaidun, D. Subramanyam, B.S. Rao, C. Balanarayana, and B.R. Kumar, Synthesis and characterization of Fe doped CdSe nanoparticles for spintronic devices. Chalcogenide Letters, 12(4) (2015) 181-190.
- S. Majumdar, S. Van Dijken, Pulsed laser deposition of La1-xSrxMnO3: Thin-film properties and spintronic applications, Journal of Physics D: Applied Physics, 47 (2014). https://doi.org/10.1088/0022-3727/47/3/034010
- S.R. Sani, J. Persson, A. Dmitriev, M. Käll, J. Åkerman, Hole mask colloidal lithography on magnetic multilayers for spin torque applications, Journal of Physics: Conference Series, 2010. https://doi.org/10.1088/1742-6596/200/7/072078
- D. Kumar, A.O. Adeyeye, Techniques in micromagnetic simulation and analysis, Journal of Physics D: Applied Physics 50 (2017). https://doi.org/10.1088/1361-6463/aa7c04
- A. Vansteenkiste, B. Van De Wiele, MUMAX: A new high-performance micromagnetic simulation tool, Journal of Magnetism and Magnetic Materials, 323 (2011) 2585–2591. https://doi.org/10.1016/j.jmmm.2011.05.037
- J. Mojsiejuk, S. Ziętek, K. Grochot, W. Skowroński, and T. Stobiecki, cmtj: Simulation package for analysis of multilayer spintronic devices. NPJ Computational Materials, 9(1) (2023) 54. https://doi.org/10.1038/s41524-023-01002-x
- L. Zhang, B. Fang, J. Cai, M. Carpentieri, V. Puliafito, F. Garescì, P.K. Amiri, G. Finocchio, Z. Zeng, Ultrahigh detection sensitivity exceeding 105 V/W in spin-torque diode, Applied Physics Letters, 113 (2018). https://doi.org/10.1063/1.5047547
- P.N. Skirdkov, A.F. Popkov, K.A. Zvezdin, Vortex spin-torque diode: The impact of DC bias, Applied Physics Letters, 113 (2018). https://doi.org/10.1063/1.5064440
- A.A. Khudorozhkov, P.N. Skirdkov, K.A. Zvezdin, P.M. Vetoshko, A.F. Popkov, Spin-torque diode frequency tuning via soft exchange pinning of both magnetic layers, Physical Review B, 96 (2017). https://doi.org/10.1103/PhysRevB.96.214410
- N. Sisodia, P.K. Muduli, Simultaneous enhancement of spin-torque diode sensitivity and frequency by voltage controlled magnetic anisotropy and parametric synchronization. Applied Physics Letters 115(10), (2019) 102401. https://doi.org/10.1063/1.5121915
- C. Wang, Y.T. Cui, J.Z. Sun, J.A. Katine, R.A. Buhrman, D.C. Ralph, Sensitivity of spin-torque diodes for frequency-tunable resonant microwave detection, Journal of Applied Physics, 106 (2009). https://doi.org/10.1063/1.3197137
- R. Tomasello, B. Fang, P. Artemchuk, M. Carpentieri, L. Fasano, A. Giordano, O. V. Prokopenko, Z.M. Zeng, G. Finocchio, Low-frequency nonresonant rectification in spin diodes, Physical Review Applied,14 (2020). https://doi.org/10.1103/PhysRevApplied.14.024043
- D.R. Rodrigues, R. Tomasello, G. Siracusano, M. Carpentieri, G. Finocchio, Ultra-sensitive voltage-controlled skyrmion-based spintronic diode, Nanotechnology 34 (2023). https://doi.org/10.1088/1361-6528/acdad6
- S. Ishibashi, K. Ando, T. Seki, T. Nozaki, H. Kubota, S. Yakata, H. Maehara, A. Fukushima, S. Yuasa, Y. Suzuki, High spin-torque diode sensitivity in CoFeB/MgO/CoFeB magnetic tunnel junctions under DC bias currents, IEEE Transactions on Magnetics, 47 (2011) 3373–3376. https://doi.org/10.1109/TMAG.2011.2159830
- S. Miwa, S. Ishibashi, H. Tomita, T. Nozaki, E. Tamura, K. Ando, N. Mizuochi, T. Saruya, H. Kubota, K. Yakushiji, T. Taniguchi, H. Imamura, A. Fukushima, S. Yuasa, Y. Suzuki, Highly sensitive nanoscale spin-torque diode, Nature Materials, 13 (2014) 50–56. https://doi.org/10.1038/nmat3778
- D. Tiwari, N. Sisodia, R. Sharma, P. Dürrenfeld, J. Åkerman, P.K. Muduli, Enhancement of spin-torque diode sensitivity in a magnetic tunnel junction by parametric synchronization, Applied Physics Letters, 108 (2016). https://doi.org/10.1063/1.4942398
- B. Fang, M. Carpentieri, X. Hao, H. Jiang, J.A. Katine, I.N. Krivorotov, B. Ocker, J. Langer, K.L. Wang, B. Zhang, B. Azzerboni, P.K. Amiri, G. Finocchio, Z. Zeng, Giant spin-torque diode sensitivity in the absence of bias magnetic field, Nature Communications, 7 (2016). https://doi.org/10.1038/ncomms11259
- A.S. Jenkins, R. Lebrun, E. Grimaldi, S. Tsunegi, P. Bortolotti, H. Kubota, K. Yakushiji, A. Fukushima, G. De Loubens, O. Klein, S. Yuasa, V. Cros, Spin-torque resonant expulsion of the vortex core for an efficient radiofrequency detection scheme, Nature Nanotechnology, 11 (2016) 360–364. https://doi.org/10.1038/nnano.2015.295
- W. Skowroński, M. Frankowski, J. Wrona, T. Stobiecki, P. Ogrodnik, J. Barnaś, Spin-torque diode radio-frequency detector with voltage tuned resonance, Applied Physics Letters, 105 (2014). https://doi.org/10.1063/1.4893463
- S. Sundara Mahalingam, B. V. Manikandan, S. Arockiaraj, Review - Micromagnetic Simulation Using OOMMF and Experimental Investigations on Nano Composite Magnets, Journal of Physics: Conference Series, Institute of Physics Publishing, 2019. https://doi.org/10.1088/1742-6596/1172/1/012070
- R. Tomasello, M. Carpentieri, and G. Finocchio, Influence of the Dzyaloshinskii-Moriya interaction on the spin-torque diode effect. Journal of Applied Physics, 115(17) (2014). https://doi.org/10.1063/1.4867750
- S.K. Joshi, Spintronics and quantum computation. Indian Journal of Physics, 78 (2004) 299-308.
- W.A. Coish, and D. Loss, Quantum computing with spins in solids. Handbook of Magnetism and Advanced Magnetic Materials. (2007). https://doi.org/10.1002/9780470022184.hmm512
- R.H. Caverly, RF Aspects of High-Field Magnetic Resonance Imaging (HF-MRI): Recent Advances, IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 3 (2019), 111–119. https://doi.org/10.1109/JERM.2018.2879396
- X. Zhang, J. Grajal, M. López-Vallejo, E. McVay, and T. Palacios, Opportunities and challenges of ambient radio-frequency energy harvesting. Joule, 4(6) (2020) 1148-1152. https://doi.org/10.1016/j.joule.2020.05.006
- I. Bendjeddou, A. Sidi El Valli, A. Litvinenko, Y. Le Guennec, F. Podevin, S. Bourdel, E. Pistono, D. Morche, A. Jenkins, R. Ferreira, M. Jotta Garcia, R. Lebrun, V. Cros, P. Bortolotti, U. Ebels, Radio Receivers based on Spin-Torque Diodes as Energy Detectors, in: 2021 19th IEEE International New Circuits and Systems Conference, NEWCAS 2021, Institute of Electrical and Electronics Engineers Inc., 2021. https://doi.org/10.1109/NEWCAS50681.2021.9462731
- R. Sharma, R. Mishra, T. Ngo, Y.X. Guo, S. Fukami, H. Sato, H. Ohno, H. Yang, Electrically connected spin-torque oscillators array for 2.4 GHz WiFi band transmission and energy harvesting, Nature Communications, 12 (2021). https://doi.org/10.1038/s41467-021-23181-1
- J. Grollier, D. Querlioz, K.Y. Camseri, K. Everschor-Sitte, S. Fukami, M.D Stiles, Spintronics for neuromorphic computing. arXiv preprint arXiv: 2007.06092 (2020).