Vol. 1 No. 1 (2024): Volume 1, Issue 1, Year 2024
Articles

Electrochemical Impedance Spectroscopy Effects of Vanadium doped - Cobalt Ferrite Nanomaterials for Supercapacitor Applications

Gowrisankar G
Department of Physics, Sri Ramakrishna College of Arts & Science, Coimbatore-641006, India
Mariappan R
Department Physics, R&D Center, Adhiyamaan College of Engineering (Autonomous), Hosur-635109, India
Emmanuvel Feon Ramesh
Department of Physics, Sri Ramakrishna College of Arts & Science, Coimbatore-641006, India
Abishek M
Department of Physics, Sri Ramakrishna College of Arts & Science, Coimbatore-641006, India
Prithisha M
Department of Physics, Sri Ramakrishna College of Arts & Science, Coimbatore-641006, India

Published 2024-07-30

Keywords

  • Cobalt Ferrite,
  • Supercapacitors,
  • İnternal resistance,
  • EIS

How to Cite

G, G., R, M., Ramesh, E. F., M, A., & M, P. (2024). Electrochemical Impedance Spectroscopy Effects of Vanadium doped - Cobalt Ferrite Nanomaterials for Supercapacitor Applications. Proceedings of the Asian Research Association, 1(1), 24-32. https://doi.org/10.54392/ara2413

Abstract

Vanadium-assisted cobalt ferrite nanoparticles generated using the co-precipitation process have better structural, morphological, and electrochemical properties than pure cobalt ferrite. The remarkable crystallinity of the cubic crystal structure was confirmed by X-ray diffraction (XRD) investigation. The use of field emission scanning electron microscopy (FESEM) demonstrated the presence of vanadium and consistent elemental composition with cobalt ferrite, while energy dispersive X-ray analysis (EDAX) verified the spherical nanoparticles with an average size of around 20 nm. Electrochemical impedance spectroscopy (EIS) indicated significant improvements in electrochemical performance, with a reduction in equivalent series resistance (ESR) from 1.54 Ω to 1.22 Ω and charge transfer resistance from 1.68 x 10⁻³ Ω to 1.5 x 10⁻³ Ω for V-doped CoFe₂O₄. Additionally, lower internal and Warburg resistance values were observed for V-doped CoFe₂O₄, suggesting efficient ion transport and storage capabilities. These findings highlight the potential of vanadium-doped cobalt ferrite nanostructures as promising materials for next-generation supercapacitors, addressing critical challenges in energy storage for renewable energy systems and portable electronics. Future studies should concentrate on refining the synthesis procedure and investigating other dopants in order to significantly improve the efficiency of supercapacitors based on cobalt ferrite.

References

  1. G. Behzadi pour, L. Fekri aval, E. Kianfar, Comparative studies of nanosheet-based supercapacitors: A review of advances in electrodes materials. Case Studies in Chemical and Environmental Engineering 9 (2024) 100584. https://doi.org/10.1016/j.cscee.2023.100584
  2. G.B. Pour, H.N. Fard, L.F. Aval, D. Dubal, Recent advances in Ni-materials/carbon nanocomposites for supercapacitor electrodes. Materials Advances, 4, (2023) 6152–6174. https://doi.org/10.1039/D3MA00609C
  3. J. Zhang, M. Gu, X. Chen, Supercapacitors for renewable energy applications: A review, Micro and Nano Engineering 21, (2023) 100229. https://doi.org/10.1016/j.mne.2023.100229
  4. M. Amiri, K. Eskandari, M. Salavati-Niasari, Magnetically retrievable ferrite nanoparticles in the catalysis application. Advances in Colloid and Interface Science, 271, (2019) 101982. https://doi.org/10.1016/j.cis.2019.07.003
  5. R. Ramadan, M.K. Ahmed, V. Uskoković, Magnetic, microstructural and photoactivated antibacterial features of nanostructured Co–Zn ferrites of different chemical and phase compositions. Journal of Alloys and Compounds, 856, (2021). https://doi.org/10.1016/j.jallcom.2020.157013
  6. Mmelesi, N. Masunga, A. Kuvarega, T.T. Nkambule, B.B. Mamba, K.K. Kefeni, Cobalt ferrite nanoparticles and nanocomposites: Photocatalytic, antimicrobial activity and toxicity in water treatment. Materials Science in Semiconductor Processing, 123, (2021) 105523. https://doi.org/10.1016/j.mssp.2020.105523
  7. B. Palanivel, M. Lallimathi, B. Arjunkumar, M. Shkir, T. Alshahrani, K.S. Al-Namshah, M.S. Hamdy, S. Shanavas, M. Venkatachalam, G. Ramalingam, rGO supported g-C3N4/CoFe2O4 heterojunction: Visible-light-active photocatalyst for effective utilization of H2O2 to organic pollutant degradation and OH radicals production. Journal of Environmental Chemical Engineering, 9(1), (2021) 104698. https://doi.org/10.1016/j.jece.2020.104698
  8. H. Sheikhpoor, A. Saljooqi, T. Shamspur, A. Mostafavi, Co-Al Layered double hydroxides decorated with CoFe2O4 nanoparticles and g-C3N4 nanosheets for efficient photocatalytic pesticide degradation. Environmental Technology & Innovation, 23, (2021) 101649. https://doi.org/10.1016/j.eti.2021.101649
  9. S.B. Bagherzadeh, M. Kazemeini, N.M. Mahmoodi, A study of the DR23 dye photocatalytic degradation utilizing a magnetic hybrid nanocomposite of MIL-53(Fe)/CoFe2O4: Facile synthesis and kinetic investigations. Journal of Molecular Liquids, 301, (2020) 112427. https://doi.org/10.1016/j.molliq.2019.112427
  10. S. Farhadi, F. Siadatnasab, A. Khataee, Ultrasound-assisted degradation of organic dyes over magnetic CoFe2O4@ZnS core-shell nanocomposite. Ultrason Sonochem 37, (2017) 298–309. https://doi.org/10.1016/j.ultsonch.2017.01.019
  11. T. Baran, M. Nasrollahzadeh, Pd/CoFe2O4/chitosan: A highly effective and easily recoverable hybrid nanocatalyst for synthesis of benzonitriles and reduction of 2-nitroaniline. Journal of Physics and Chemistry of Solids, 149, (2021) 109772. https://doi.org/10.1016/j.jpcs.2020.109772
  12. R. Rajangam, N. Pugazhenthiran, S. Krishna, R.V. Mangalaraja, H. Valdés, A. Ravikumar, P. Sathishkumar, Solar light-driven CoFe2O4/α-Ga2O3 heterojunction nanorods mediated activation of peroxymonosulfate for photocatalytic degradation of norflurazon. Journal of Environmental Chemical Engineering, 9(5), (2021) 106237. https://doi.org/10.1016/j.jece.2021.106237
  13. F. Hu, W. Luo, C. Liu, H. Dai, X. Xu, Q. Yue, L. Xu, G. Xu, Y. Jian, X. Peng, Fabrication of graphitic carbon nitride functionalized P–CoFe2O4 for the removal of tetracycline under visible light: Optimization, degradation pathways and mechanism evaluation. Chemosphere 274, (2021) 129783. https://doi.org/10.1016/j.chemosphere.2021.129783
  14. F. Sharifianjazi, M. Moradi, N. Parvin, A. Nemati, A. Jafari Rad, N. Sheysi, A. Abouchenari, A. Mohammadi, S. Karbasi, Z. Ahmadi, A. Esmaeilkhanian, M. Irani, A. Pakseresht, S. Sahmani, M. Shahedi Asl, Magnetic CoFe2O4 nanoparticles doped with metal ions: A review. Ceramics International, 46(11), (2020) 18391–18412. https://doi.org/10.1016/j.ceramint.2020.04.202
  15. B. Saravanakumar, A. Haritha, G. Ravi, R. Yuvakkumar, Synthesis of X3(PO4)2 [X = Ni, Cu, Mn] nanomaterials as an efficient electrode for energy storage applications. Journal of Nanoscience and Nanotechnology, 20 (2020) 2813-2822. https://doi.org/10.1166/jnn.2020.17448
  16. M.E.K. Fuziki, R. Brackmann, D.T. Dias, A.M. Tusset, S. Specchia, G.G. Lenzi, Effects of synthesis parameters on the properties and photocatalytic activity of the magnetic catalyst TiO2/CoFe2O4 applied to selenium photoreduction. Journal of Water Process Engineering 42, (2021) 102163. https://doi.org/10.1016/j.jwpe.2021.102163
  17. S.S. Kolluru, S. Agarwal, S. Sireesha, I. Sreedhar, S.R. Kale, Heavy metal removal from wastewater using nanomaterials-process and engineering aspects. Process Safety and Environmental Protection, 150, (2021) 323–355. https://doi.org/10.1016/j.psep.2021.04.025
  18. J.A.Z. Martínez, R.L. Porto, I.E.M. Cortez, T. Brousse, J.A.A. Martínez, L.A.L. Pavón, MnPO4·H2O as Electrode Material for Electrochemical Capacitors. Journal of The Electrochemical Society, 165, (2018) A2349–A2356. https://doi.org/10.1149/2.1281810jes
  19. C.C. Lee, F.S. Omar, A. Numan, N. Duraisamy, K. Ramesh, S. Ramesh, An enhanced performance of hybrid supercapacitor based on polyaniline-manganese phosphate binary composite. Journal of Solid State Electrochemistry, 21, (2017) 3205–3213. https://doi.org/10.1007/s10008-017-3624-1
  20. Y. Long, J. Nie, C. Yuan, H. Ma, Y. Chen, Y. Cong, Q. Wang, Y. Zhang, Preparation of CoFe2O4/MWNTs/sponge electrode to enhance dielectric barrier plasma discharge for degradation of phenylic pollutants and Cr(VI) reduction. Applied Catalysis B: Environmental, 283 (2021) 119604. https://doi.org/10.1016/j.apcatb.2020.119604
  21. P. Monisha, P. Priyadharshini, S.S. Gomathi, K. Pushpanathan, Influence of Mn dopant on the crystallite size, optical and magnetic behaviour of CoFe2O4 magnetic nanoparticles. Journal of Physics and Chemistry of Solids, 148, (2021) 109654. https://doi.org/10.1016/j.jpcs.2020.109654
  22. C. Li, H. Che, P. Huo, Y. Yan, C. Liu, H. Dong, Confinement of ultrasmall CoFe2O4 nanoparticles in hierarchical ZnIn2S4 microspheres with enhanced interfacial charge separation for photocatalytic H2 evolution. Journal of Colloid and Interface Science, 581, (2021) 764–773. https://doi.org/10.1016/j.jcis.2020.08.019
  23. S. Talukdar, P. Saha, I. Chakraborty, K. Mandal, Surface functionalized CoFe2O4 nano-hollowspheres: Novel properties. Journal of Magnetism and Magnetic Materials, 513 (2020) 167079. https://doi.org/10.1016/j.jmmm.2020.167079
  24. M. Gao, J. Feng, F. He, W. Zeng, X. Wang, Y. Ren, T. Wei, Carbon microspheres work as an electron bridge for degrading high concentration MB in CoFe2O4@carbon microsphere/g-C3N4 with a hierarchical sandwich-structure. Applied Surface Science, 507, (2020) 145167. https://doi.org/10.1016/j.apsusc.2019.145167
  25. M.M. Emara, S.M. Reda, M.A. El-Naggar, M.A. Mousa, Magnetization and optical bandgap of Cu-Mn vanadate-oxide mixed phase nanostructures. Journal of Nanoparticle Research, 24, (2022). https://doi.org/10.1007/s11051-022-05607-z
  26. A. Song, A.Chemseddine, I.Y. Ahmet, P. Bogdanoff, D. Friedrich, F.F. Abdi, S.P. Berglund, R. van de Krol, Evaluation of Copper Vanadate (β-Cu2V2O7) as a Photoanode Material for Photoelectrochemical Water Oxidation. Chemistry of Materials, 32(6), (2020) 2408–2419. https://doi.org/10.1021/acs.chemmater.9b04909
  27. N.O. Laschuk, E.B. Easton, O.V. Zenkina, Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Advances, 11 (2021) 27925–27936. https://doi.org/10.1039/D1RA03785D