Electrochemical Impedance Spectroscopy Effects of Vanadium doped - Cobalt Ferrite Nanomaterials for Supercapacitor Applications
Published 2024-07-30
Keywords
- Cobalt Ferrite,
- Supercapacitors,
- İnternal resistance,
- EIS
Copyright (c) 2024 Gowrisankar G, Mariappan R, Emmanuvel Feon Ramesh, Abishek M, Prithisha M (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
Abstract
Vanadium-assisted cobalt ferrite nanoparticles generated using the co-precipitation process have better structural, morphological, and electrochemical properties than pure cobalt ferrite. The remarkable crystallinity of the cubic crystal structure was confirmed by X-ray diffraction (XRD) investigation. The use of field emission scanning electron microscopy (FESEM) demonstrated the presence of vanadium and consistent elemental composition with cobalt ferrite, while energy dispersive X-ray analysis (EDAX) verified the spherical nanoparticles with an average size of around 20 nm. Electrochemical impedance spectroscopy (EIS) indicated significant improvements in electrochemical performance, with a reduction in equivalent series resistance (ESR) from 1.54 Ω to 1.22 Ω and charge transfer resistance from 1.68 x 10⁻³ Ω to 1.5 x 10⁻³ Ω for V-doped CoFe₂O₄. Additionally, lower internal and Warburg resistance values were observed for V-doped CoFe₂O₄, suggesting efficient ion transport and storage capabilities. These findings highlight the potential of vanadium-doped cobalt ferrite nanostructures as promising materials for next-generation supercapacitors, addressing critical challenges in energy storage for renewable energy systems and portable electronics. Future studies should concentrate on refining the synthesis procedure and investigating other dopants in order to significantly improve the efficiency of supercapacitors based on cobalt ferrite.
References
- G. Behzadi pour, L. Fekri aval, E. Kianfar, Comparative studies of nanosheet-based supercapacitors: A review of advances in electrodes materials. Case Studies in Chemical and Environmental Engineering 9 (2024) 100584. https://doi.org/10.1016/j.cscee.2023.100584
- G.B. Pour, H.N. Fard, L.F. Aval, D. Dubal, Recent advances in Ni-materials/carbon nanocomposites for supercapacitor electrodes. Materials Advances, 4, (2023) 6152–6174. https://doi.org/10.1039/D3MA00609C
- J. Zhang, M. Gu, X. Chen, Supercapacitors for renewable energy applications: A review, Micro and Nano Engineering 21, (2023) 100229. https://doi.org/10.1016/j.mne.2023.100229
- M. Amiri, K. Eskandari, M. Salavati-Niasari, Magnetically retrievable ferrite nanoparticles in the catalysis application. Advances in Colloid and Interface Science, 271, (2019) 101982. https://doi.org/10.1016/j.cis.2019.07.003
- R. Ramadan, M.K. Ahmed, V. Uskoković, Magnetic, microstructural and photoactivated antibacterial features of nanostructured Co–Zn ferrites of different chemical and phase compositions. Journal of Alloys and Compounds, 856, (2021). https://doi.org/10.1016/j.jallcom.2020.157013
- Mmelesi, N. Masunga, A. Kuvarega, T.T. Nkambule, B.B. Mamba, K.K. Kefeni, Cobalt ferrite nanoparticles and nanocomposites: Photocatalytic, antimicrobial activity and toxicity in water treatment. Materials Science in Semiconductor Processing, 123, (2021) 105523. https://doi.org/10.1016/j.mssp.2020.105523
- B. Palanivel, M. Lallimathi, B. Arjunkumar, M. Shkir, T. Alshahrani, K.S. Al-Namshah, M.S. Hamdy, S. Shanavas, M. Venkatachalam, G. Ramalingam, rGO supported g-C3N4/CoFe2O4 heterojunction: Visible-light-active photocatalyst for effective utilization of H2O2 to organic pollutant degradation and OH radicals production. Journal of Environmental Chemical Engineering, 9(1), (2021) 104698. https://doi.org/10.1016/j.jece.2020.104698
- H. Sheikhpoor, A. Saljooqi, T. Shamspur, A. Mostafavi, Co-Al Layered double hydroxides decorated with CoFe2O4 nanoparticles and g-C3N4 nanosheets for efficient photocatalytic pesticide degradation. Environmental Technology & Innovation, 23, (2021) 101649. https://doi.org/10.1016/j.eti.2021.101649
- S.B. Bagherzadeh, M. Kazemeini, N.M. Mahmoodi, A study of the DR23 dye photocatalytic degradation utilizing a magnetic hybrid nanocomposite of MIL-53(Fe)/CoFe2O4: Facile synthesis and kinetic investigations. Journal of Molecular Liquids, 301, (2020) 112427. https://doi.org/10.1016/j.molliq.2019.112427
- S. Farhadi, F. Siadatnasab, A. Khataee, Ultrasound-assisted degradation of organic dyes over magnetic CoFe2O4@ZnS core-shell nanocomposite. Ultrason Sonochem 37, (2017) 298–309. https://doi.org/10.1016/j.ultsonch.2017.01.019
- T. Baran, M. Nasrollahzadeh, Pd/CoFe2O4/chitosan: A highly effective and easily recoverable hybrid nanocatalyst for synthesis of benzonitriles and reduction of 2-nitroaniline. Journal of Physics and Chemistry of Solids, 149, (2021) 109772. https://doi.org/10.1016/j.jpcs.2020.109772
- R. Rajangam, N. Pugazhenthiran, S. Krishna, R.V. Mangalaraja, H. Valdés, A. Ravikumar, P. Sathishkumar, Solar light-driven CoFe2O4/α-Ga2O3 heterojunction nanorods mediated activation of peroxymonosulfate for photocatalytic degradation of norflurazon. Journal of Environmental Chemical Engineering, 9(5), (2021) 106237. https://doi.org/10.1016/j.jece.2021.106237
- F. Hu, W. Luo, C. Liu, H. Dai, X. Xu, Q. Yue, L. Xu, G. Xu, Y. Jian, X. Peng, Fabrication of graphitic carbon nitride functionalized P–CoFe2O4 for the removal of tetracycline under visible light: Optimization, degradation pathways and mechanism evaluation. Chemosphere 274, (2021) 129783. https://doi.org/10.1016/j.chemosphere.2021.129783
- F. Sharifianjazi, M. Moradi, N. Parvin, A. Nemati, A. Jafari Rad, N. Sheysi, A. Abouchenari, A. Mohammadi, S. Karbasi, Z. Ahmadi, A. Esmaeilkhanian, M. Irani, A. Pakseresht, S. Sahmani, M. Shahedi Asl, Magnetic CoFe2O4 nanoparticles doped with metal ions: A review. Ceramics International, 46(11), (2020) 18391–18412. https://doi.org/10.1016/j.ceramint.2020.04.202
- B. Saravanakumar, A. Haritha, G. Ravi, R. Yuvakkumar, Synthesis of X3(PO4)2 [X = Ni, Cu, Mn] nanomaterials as an efficient electrode for energy storage applications. Journal of Nanoscience and Nanotechnology, 20 (2020) 2813-2822. https://doi.org/10.1166/jnn.2020.17448
- M.E.K. Fuziki, R. Brackmann, D.T. Dias, A.M. Tusset, S. Specchia, G.G. Lenzi, Effects of synthesis parameters on the properties and photocatalytic activity of the magnetic catalyst TiO2/CoFe2O4 applied to selenium photoreduction. Journal of Water Process Engineering 42, (2021) 102163. https://doi.org/10.1016/j.jwpe.2021.102163
- S.S. Kolluru, S. Agarwal, S. Sireesha, I. Sreedhar, S.R. Kale, Heavy metal removal from wastewater using nanomaterials-process and engineering aspects. Process Safety and Environmental Protection, 150, (2021) 323–355. https://doi.org/10.1016/j.psep.2021.04.025
- J.A.Z. Martínez, R.L. Porto, I.E.M. Cortez, T. Brousse, J.A.A. Martínez, L.A.L. Pavón, MnPO4·H2O as Electrode Material for Electrochemical Capacitors. Journal of The Electrochemical Society, 165, (2018) A2349–A2356. https://doi.org/10.1149/2.1281810jes
- C.C. Lee, F.S. Omar, A. Numan, N. Duraisamy, K. Ramesh, S. Ramesh, An enhanced performance of hybrid supercapacitor based on polyaniline-manganese phosphate binary composite. Journal of Solid State Electrochemistry, 21, (2017) 3205–3213. https://doi.org/10.1007/s10008-017-3624-1
- Y. Long, J. Nie, C. Yuan, H. Ma, Y. Chen, Y. Cong, Q. Wang, Y. Zhang, Preparation of CoFe2O4/MWNTs/sponge electrode to enhance dielectric barrier plasma discharge for degradation of phenylic pollutants and Cr(VI) reduction. Applied Catalysis B: Environmental, 283 (2021) 119604. https://doi.org/10.1016/j.apcatb.2020.119604
- P. Monisha, P. Priyadharshini, S.S. Gomathi, K. Pushpanathan, Influence of Mn dopant on the crystallite size, optical and magnetic behaviour of CoFe2O4 magnetic nanoparticles. Journal of Physics and Chemistry of Solids, 148, (2021) 109654. https://doi.org/10.1016/j.jpcs.2020.109654
- C. Li, H. Che, P. Huo, Y. Yan, C. Liu, H. Dong, Confinement of ultrasmall CoFe2O4 nanoparticles in hierarchical ZnIn2S4 microspheres with enhanced interfacial charge separation for photocatalytic H2 evolution. Journal of Colloid and Interface Science, 581, (2021) 764–773. https://doi.org/10.1016/j.jcis.2020.08.019
- S. Talukdar, P. Saha, I. Chakraborty, K. Mandal, Surface functionalized CoFe2O4 nano-hollowspheres: Novel properties. Journal of Magnetism and Magnetic Materials, 513 (2020) 167079. https://doi.org/10.1016/j.jmmm.2020.167079
- M. Gao, J. Feng, F. He, W. Zeng, X. Wang, Y. Ren, T. Wei, Carbon microspheres work as an electron bridge for degrading high concentration MB in CoFe2O4@carbon microsphere/g-C3N4 with a hierarchical sandwich-structure. Applied Surface Science, 507, (2020) 145167. https://doi.org/10.1016/j.apsusc.2019.145167
- M.M. Emara, S.M. Reda, M.A. El-Naggar, M.A. Mousa, Magnetization and optical bandgap of Cu-Mn vanadate-oxide mixed phase nanostructures. Journal of Nanoparticle Research, 24, (2022). https://doi.org/10.1007/s11051-022-05607-z
- A. Song, A.Chemseddine, I.Y. Ahmet, P. Bogdanoff, D. Friedrich, F.F. Abdi, S.P. Berglund, R. van de Krol, Evaluation of Copper Vanadate (β-Cu2V2O7) as a Photoanode Material for Photoelectrochemical Water Oxidation. Chemistry of Materials, 32(6), (2020) 2408–2419. https://doi.org/10.1021/acs.chemmater.9b04909
- N.O. Laschuk, E.B. Easton, O.V. Zenkina, Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Advances, 11 (2021) 27925–27936. https://doi.org/10.1039/D1RA03785D