Vol. 1 No. 1 (2024): Volume 1, Issue 1, Year 2024
Articles

Effect of Two Different Deposition Temperatures on the Physical and Electrical Properties of the ZTO Thin Films For Solar Collector Applications

Kiruthiga G
Department of Physics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore-641 043, Tamil Nadu, India.
Rajni K.S
Department of Sciences, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, Tamil Nadu, India.
Deepika C.R
Department of Physics, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore-641 043, Tamil Nadu, India.
Nandhakumar Eswaramoorthy
Center for Nonlinear Systems, Chennai Institute of Technology, Chennai-600069, Tamil Nadu, India
Vishnu Narayanan
Department of Sciences, Amrita School of Engineering, Coimbatore, Amrita Vishwa Vidyapeetham, Tamil Nadu, India.
Chandini Ragumoorthy
Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan.

Published 2024-07-30

Keywords

  • Zn-Sn,
  • Sn-Zn,
  • Thin films,
  • TCO,
  • 3D Laser Profilometer,
  • FTIR
  • ...More
    Less

How to Cite

G, K., K.S, R., C.R, D., Eswaramoorthy, N., Narayanan, V., & Ragumoorthy, C. (2024). Effect of Two Different Deposition Temperatures on the Physical and Electrical Properties of the ZTO Thin Films For Solar Collector Applications. Proceedings of the Asian Research Association, 1(1), 12-23. https://doi.org/10.54392/ara2412

Abstract

Semiconducting metal oxides have piqued researchers' attention in the realm of energy conversion due to their importance in primary research and future applications. The current study focused on the synthesis, preparation, and optimization of the physical and electrical properties of the direct and reverse ratios of the precursors (Zinc Acetate and Tin (II) Chloride) used to prepare ZTO substrates at two different deposition temperatures using spray pyrolysis technique. Zinc acetate is kept constant in the first set, whereas tin chloride is kept constant in the second set, and other components are altered from 0.05M to 0.25 in 0.05-step increments. The XRD study reveals that all spray-deposited ZTO thin films are polycrystalline in nature, with a preferred orientation along the (101) plane. From morphology studies observed that while the deposition temperature increased, smooth and uniform morphology is achieved. Optical studies show that the percentage of transmittance decreased while the deposition temperature increased. Hall Effect studies show that after changing the molar concentration as well as the deposition temperature there is change in conductivity and mobility values. Except for lower ratio films, the transmission percentage of ZTO films recorded in the visible area approaches 80%. The 3D laser profilometer results show that varying the starting materials' molarity (>Ra&Rz) and deposition temperature (<Ra&Rz) leads to changes in surface roughness and improved film growth.

References

  1. R. Riveros, E. Romero, G. Gordillo (2006) Synthesis and characterization of highly transparent and conductive SnO2: F and In2O3: Sn thin films deposited by spray pyrolysis. Brazilian journal of physics, 36(3), 1042–1045. https://doi.org/10.1590/S0103-97332006000600065
  2. K.L. Chopra, S.R. Dass, (1983) Thin film solar cells. Plenum Press, Springer, New York. https://doi.org/10.1007/978-1-4899-0418-8
  3. C.S. Ferekides, R. Mamazza, U. Balasubramanian, D.L. Morel, Cd1-xZnXTe thin films and junctions. Thin Solid Films, 480–481, (2005) 471–476. https://doi.org/10.1016/j.tsf.2004.11.069
  4. J.A. Costellamo (1992) Handbook of display technology. Elsevier Science.
  5. H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish (1995) Semiconducting transparent thin films. Institute of Physics, Philadelphia.
  6. S.U. Lee, J.H. Boo, B. Hong Structural, electrical, and optical properties of SnO2: Sb films prepared on flexible substrate at room temperature. Japanese Journal of Applied Physics, 50(1S1), (2011) 01AB10. https://doi.org/10.1143/JJAP.50.01AB10
  7. S. Ishibashi, Y. Higuchi, Y. Ota, K. Nakamura, Low resistivity indium-tin oxide transparent conductive films. I. Effect of introducing H2O gas or H2 gas during direct current magnetron sputtering. Journal of Vacuum Science Technology A, 8, (1990) 1399–1402. https://doi.org/10.1116/1.576889
  8. A.A. Yadav, E.U. Masumdara, A.V. Moholkar, M. Neumann-Spallart, K.Y. Rajpure, C.H. Bhosale, Electrical, structural and optical properties of SnO2: F thin films: effect of the substrate temperature. Journal of Alloys and Compounds, 488(1), (2009) 350–355. https://doi.org/10.1016/j.jallcom.2009.08.130
  9. K. Yoo, J.Y. Kim, J.A. Lee, J.S. Kim, D.K. Lee, K. Kim, M.J. Ko, Completely transparent conducting oxide-free and flexible dye-sensitized solar cells fabricated on plastic substrates. ACS nano, 9(4), (2015) 3760-3771. https://doi.org/10.1021/acsnano.5b01346
  10. R. Xu, X. Zhang, D. Zhang, J. Liu, J. Lu, R. Zhao, Y.Ji, F. Qian, H. Wang, J. Fan, W. Li, H. Yang H. Yang, High stability of flexible perovskite transparent conductive oxide film via van der Waals heteroepitaxy. Journal of Alloys and Compounds, 890, (2022) 161897. https://doi.org/10.1016/j.jallcom.2021.161897
  11. B. Sharma, P.S. Rana, The Bright and Dark Shades of Transparent Conducting Perovskites: From Science to Global Market. In Journal of Physics: Conference Series, IOP Publishing, 2267(1), (2022) 012030. https://doi.org/10.1088/1742-6596/2267/1/012030
  12. J. Liu, Y. Lu, X. Cui, Y. Geng, G. Jin, Z. Zhai, Inhomogeneous Oxygen Vacancy Distribution in Semiconductor Gas Sensors: Formation, Migration and Determination on Gas Sensing Characteristics. Sensor, 248, (2017) 862. https://doi.org/10.3390/s17081852
  13. G. Kang, J.S. Park, H.J. Lee, Pt-doped SnO2 thin film based micro gas sensors with high selectivity to toluene and HCHOJ. Sensors and Actuators B: Chemical, 248, 1011-1016. https://doi.org/10.1016/j.snb.2017.03.010
  14. B. Xu, X. G. Ren, G. R. Gu, L.L. Lan, B.J. Wu, Structural and optical properties of Zn-doped SnO2 films prepared by DC and RF magnetron co-sputtering. Superlattices and Microstructures, 89, (2016) 34-42. https://doi.org/10.1016/j.spmi.2015.10.043
  15. S.M. Ali, J. Muhammad, S.T. Hussain, S.A. Bakar, M. Ashraf, N. ur-Rehman, Effect of doping on the structural and optical properties of SnO2 thin films fabricated by aerosol assisted chemical vapor deposition. In Journal of Physics: Conference Series IOP Publishing. 439(1), (2013) 012013. https://doi.org/10.1088/1742-6596/439/1/012013
  16. G. Kiruthiga, T. Raguram, K.S. Rajni, P. Selvakumar, E. Nandhakumar, DSSCs: a facile and low-cost MgSnO3-based transparent conductive oxides via nebulized spray pyrolysis technique. Journal of Materials Science: Materials in Electronics, 32(18), (2021) 22780-22791. https://doi.org/10.1007/s10854-021-06754-0
  17. G. Kiruthiga, K.S. Rajni, T. Raguram, N. Eswaramoorthy. S. Pitchaiya, Indium-free MgSnO3 transparent conductive oxide layer: investigation on structural, optical and electrical properties and photovoltaic performance analysis, Applied Nanoscience. 13(5), 3421-3434. https://doi.org/10.1007/s13204-022-02353-5
  18. G. Kiruthiga, K.S. Rajni, N. Geethanjali, T. Raguram, E. Nandhakumar, N. Senthilkumar, SnO2: Investigation of optical, structural, electrical properties of transparent conductive oxide thin films prepared by nebulizer spray pyrolysis for photovoltaic applications. Inorganic Chemistry Communications, 145, (2022) 109968.
  19. D. Iskenderoglu, Effect of Mg doped on SnO2 thin films grown by Spray Pyrolysis technique. Modern Physics Letters B, 33(04), (2019) 1950030. https://doi.org/10.1142/S0217984919500301
  20. Ravidas, Transparent and Conducting Magnesium Tin Oxide Films for Solar Cells, 2015, researcher from Alagapa University, http://hdl.handle.net/10603/54337
  21. B. Saravanakumar, G. Ravi, V. Ganesh, F. Ameen, A. Al-Sabri, R. Yuvakkumar, and Surfactant assisted zinc doped tin oxide nanoparticles for supercapacitor applications. Journal of Sol-Gel Science and Technology, 86, (2018) 521-535. https://doi.org/10.1007/s10971-018-4685-z
  22. B. Abdallah, A.K. Jazmati, M. Kakhia (2018) Physical, Optical and Sensing properties of sprayed zinc doped tin oxide thin films, Optik, 158, (2018) 1113-1122. https://doi.org/10.1016/j.ijleo.2018.01.008
  23. S. Yılmaz, E. McGlynn, E. Bacaksız, J. Cullen, R.K. Chellappan. Structural, optical and magnetic properties of Ni-doped ZnO micro-rods grown by the spray pyrolysis method. Chemical Physics Letters, 525, (2012) 72-76. https://doi.org/10.1016/j.cplett.2012.01.003
  24. Y. Kumar, R. Kumar, R.J. Choudhary, A. Thakur, A.P. Singh, Reduction in the tilting of oxygen octahedron and its effect on bandgap with La doping in SrSnO3. Ceramics International, 46(11), (2020) 17569-17576. https://doi.org/10.1016/j.ceramint.2020.04.056
  25. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-Sensitized Solar Cells. Chemical Reviews, 110(11), (2010) 6595-6663. https://doi.org/10.1021/cr900356p
  26. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential Deposition As a Route to High-Performance Perovskite-Sensitized Solar Cells. Nature, 499, (2013) 316-319. https://doi.org/10.1038/nature12340
  27. R. Xu, L. Min, Z. Qi, X. Zhang, J. Jian, Y. Ji, H. Yang, (2020) Perovskite transparent conducting oxide for the design of a transparent, flexible, and self-powered perovskite photodetector. ACS applied materials & interfaces, 12(14), 16462-16468. https://doi.org/10.1021/acsami.0c01298
  28. L.B. Amor, B. Belgacem, J.S. Filhol, M.L. Doublet, M.B. Yahia, R.B. Hassen, New p-type Al-substituted SrSnO3 perovskites for TCO applications. Chemical Communications, 56(17), (2020) 2566-2569. https://doi.org/10.1039/C9CC09212A
  29. G. Kiruthiga, S. Chinnappanadar, Structural, optical, electrical and Hall Effect studies of spray pyrolysised MgSnO3 thin films. International journal of chemtech Research, 6(3), (2014) 1942-1944.
  30. G. Kiruthiga Prabhu, T. Raguram, K.S. Rajni, Annealing effect of magnesium tin oxide thin films prepared by nebulizer spray pyrolysis technique for dssc applications. In Materials Science and Engineering Conference Series, 577(1), (2019) 012093. https://doi.org/10.1088/1757-899X/577/1/012093
  31. M. Fukumoto, H. Kaji, M. Shiiba, I. Ohgitani, Recent Research on Flattening Behavior of Thermal Sprayed Particle Onto Flat Substrate Surface, Proceedings of the International Symposium on Novel Materials Processing by Advanced Electromagnetic Energy Sources, (2005) 396-400. https://doi.org/10.1016/B978-008044504-5/50081-7
  32. M.T. Kibria, A. Ahammed, S.M. Sony, F. Hossain, S.U. Islam, A Review: Comparative studies on different generation solar cells technology. In Proc. of 5th International Conference on Environmental Aspects of Bangladesh, (2014) 51-53.
  33. M. Law, L.E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, P. Yang, ZnO-Al2O3 and ZnO-TiO2 core- shell nanowire dye sensitized solar cells. The Journal of physical Chemistry B, ACS Publications, 110(45), (2006) 22652-22663. https://doi.org/10.1021/jp0648644
  34. A.N.B. Zulkifili, T. Kento, M. Daiki, A. Fujiki, The basic research on the dye-sensitized solar cells (DSSC). Journal of Clean Energy Technologies, 3(5), (2015) 382-387. https://doi.org/10.7763/JOCET.2015.V3.228
  35. G. Ramanathan, K.R. Murali, Dye Sensitized Solar Cells Behaviors of TCO Materials, International Journal of Advanced Scientific Technologies in Engineering and Management Sciences, 2(10), (2016) 11-14.
  36. H. Kusama, H. Orita, H. Sugihara, TiO2 Band Shift by Nitrogen- Containing Heterocycles in Dye- Sensitized Solar Cells: a Periodic Density Functional Theory Study. Langmuir 24, (2008) 4411–4419. https://doi.org/10.1021/la703696f
  37. T.J. Coutts, K.A. Emery, J.S. Ward, Modeled performance of polycrystalline thin-film tandem solar cells. Progress in Photovoltaic, Research and Applications, 10, (2002) 195–203. https://doi.org/10.1002/pip.419
  38. O. Mohiuddin, M. Obaidullah, C. Sabah, Improvement in dye sensitized solar cells from past to present. Optical and Quantum Electronics, 50(10), (2018) 377. https://doi.org/10.1007/s11082-018-1647-1
  39. J. Yang, A. Banerjee, T. Glatfelter, K. Hoffman, X. Xu, S. Guha, Progress in triple-junction amorphous silicon-based alloy solar cells and modules using hydrogen dilution. In Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion-WCPEC (A Joint Conference of PVSC, PVSEC and PSEC), IEEE, 1, (1994) 380-385.
  40. R.R. King, J.H. Ermer, D.D. Krut, J.E. Granata, M.S. Gillanders, B.T. Cavicchi, N.H. Karam, (2001) Advances in high-efficiency III–V multijunction solar cells. Proceedings of the Space Power Workshop. https://doi.org/10.1155/2007/29523
  41. Goswami, (2006) Thin film fundamentals, New Age International (P) Ltd, 1-3.
  42. K. Seshan, (2002) Handbook of Thin Film Deposition Processes and Techniques: principles, method, equipment and applications, Noyes publications, CRC Press. https://doi.org/10.1201/9781482269680
  43. L.B. Freund, S. Suresh, (2003) Thin Film Materials: Stress, defect formation and surface evolution. Cambridge University Press. https://doi.org/10.1017/CBO9780511754715
  44. M. Ohring, (1992) The Materials Science of Thin Films Academic Press. San Diego New yourk Boston.
  45. D.M. Mattox, (2010) Arc Vapor Deposition. Handbook of Physical Vapor Deposition (PVD) Processing (Second Edition), 287-300. https://doi.org/10.1016/B978-0-8155-2037-5.00008-3
  46. D. Perednis, L.J. Gauckler, Thin Film Deposition Using Spray Pyrolysis, Journal of Electroceramics, 14(2), (2005) 103-111. https://doi.org/10.1007/s10832-005-0870-x
  47. B.G. Lewis, D.C. Paine, Applications and Processing of Transparent Conducting Oxides. MRS Bulletin, 25(8), (2000) 22-27. https://doi.org/10.1557/mrs2000.147
  48. G. Kiruthiga, K.S Rajni, T. Raguram, N. Eswaramoorthy, Selvakumar Pitchaiya. Investigation of low-cost Magnesium Stannate transparent conductive oxide layer Optical, structural and electrical properties and photovoltaic applications. IOP confer.series, Material science and Engineering, 1263(1), (2022) 012020.