Vol. 1 No. 1 (2024): Volume 1, Issue 1, Year 2024
Articles

Micromagnetic Simulation of Skyrmion Deformation in Elliptical Nanoring

Vishnupriya Kuppusamy
Pollachi Institute of Engineering Technology, Poosaripatti, Pollachi-642205, India
Amuda Rajamani
Centre for Non-linear Dynamics, PSG College of Technology, Coimbatore-641004, Tamil Nadu, India
Kanimozhi Natarajan
Centre for Non-linear Dynamics, PSG College of Technology, Coimbatore-641004, Tamil Nadu, India
Brinda Arumugam
Centre for Non-linear Dynamics, PSG College of Technology, Coimbatore-641004, Tamil Nadu, India

Published 2024-07-30

Keywords

  • Skyrmion,
  • Nanoring,
  • Micromagnetic simulation,
  • OOMMF

How to Cite

Kuppusamy, V., Rajamani, A., Natarajan, K., & Arumugam, B. (2024). Micromagnetic Simulation of Skyrmion Deformation in Elliptical Nanoring. Proceedings of the Asian Research Association, 1(1), 120-125. https://doi.org/10.54392/ara24113

Abstract

The present study explores the micromagnetic properties of ultrathin elliptical nanorings with whirling magnetic structures called skyrmions. The simulations investigate the creation and dynamics of skyrmion using the Object Oriented MicroMagnetic Framework (OOMMF). A cobalt nanoring placed on a platinum substrate makes up the model system. To closely resemble genuine materials, material properties including saturation magnetization, Dzyaloshinskii-Moriya interaction (DMI) constant, and Heisenberg exchange stiffness are carefully selected. The simulations methodically examine the effects of applied magnetic fields and different DMI strengths. In order to comprehend their influence on the stability and deformation of the skyrmions inside the nanoring, these external elements are investigated. Our results show a strong relationship between the generated skyrmion size and shape and the DMI strength. Distinct stability and deformation patterns result from varying DMI intensities, underscoring the pivotal function of this interaction in controlling skyrmion behavior inside the nanoring geometry. At higher DMI values, skyrmions exhibit irregular patterns and increased magnetic torque, with variations in domain wall thickness and skyrmion configuration over time. We demonstrate that by optimizing the combination of DMI strength and magnetic field, controlled generation and stabilization of skyrmions in nanostructures can be achieved. This work widens the opportunities for future developments in spintronic technology by aiding in the creation of nanoscale memory and information devices.

References

  1. S. Muuhlbauer, B. Binz, F. Jonietz, C. Pfleiderer, A. Rosch, A. Neubauer, R. Georgii, P. Böni, Skyrmion lattice in a chiral magnet. Science, 323(5916), (2009) 915-919. https://doi.org/10.1126/science.1166767
  2. N. Nagaosa, Y. Tokura, Topological properties and dynamics of magnetic skyrmions. Nature Nanotechnology, 8, (2013) 899–911. https://doi.org/10.1038/nnano.2013.243
  3. C.Y. You, N.H. Kim, (2015) Critical Dzyaloshinskii–Moriya interaction energy density for the skyrmion states formation in ultrathin ferromagnetic layer. Current Applied Physics, 15(3), 298-301. https://doi.org/10.1016/j.cap.2014.12.026
  4. O. Boulle, J. Vogel, H. Yang, S. Pizzini, D. de Souza Chaves, A. Locatelli, T.O. Menteş, A. Sala, L.D. Buda-Prejbeanu, O. Klein, M. Belmeguenai, Y. Roussigné, A. Stashkevich, S. Mourad Chérif, L. Aballe, M. Foerster, M. Chshiev, S. Auffret, I. Mihai Miron & G. Gaudin, Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nature nanotechnology, 11(5), (2016) 449-454. https://doi.org/10.1038/nnano.2015.315
  5. C. Moreau-Luchaire, C. Moutafis, N. Reyren, J. Sampaio, N. Van Horne, C.A.F. K. Vaz, K. Bouzehouane, K. Garcia, C. Deranlot, P. Warnicke, P. Wohlhüter, J.M George, V. Raabe, V. Cros, A. Fert, (2015). Skyrmions at room temperature: From magnetic thin films to magnetic multilayers. arXiv preprint arXiv. https://doi.org/10.48550/arXiv.1502.07853
  6. A. Fert, N. Reyren, V. Cros, Magnetic skyrmions: advances in physics and potential applications. Nature Reviews Materials, 2(7), (2017) 1-15. https://doi.org/10.1038/natrevmats.2017.31
  7. J. Ding, X. Yang, T. Zhu, Manipulating current induced motion of magnetic skyrmions in the magnetic nanotrack. Journal of Physics D: Applied Physics, 48(11), (2015) 115004. https://doi.org/10.1088/0022-3727/48/11/115004
  8. H. Vigo-Cotrina, A.P. Guimarães, Creating skyrmions and skyrmioniums using oscillating perpendicular magnetic fields. Journal of Magnetism and Magnetic Materials, 507, (2020) 166848.https://doi.org/10.1016/j.jmmm.2020.166848
  9. W. Koshibae, N. Nagaosa, Theory of antiskyrmions in magnets. Nature Communications, 7(1), (2016) 10542.https://doi.org/10.1038/ncomms10542
  10. L. Camosi, S. Rohart, O. Fruchart, S. Pizzini, M. Belmeguenai, Y. Roussigné, A. Stashkevich, S.M. Cherif, L. Ranno, M. de Santis, J. Vogel, Anisotropic dzyaloshinskii-moriya interaction in ultrathin epitaxial au/co/w (110). Physical Review B, 95(21), (2017) 214422. https://doi.org/10.1103/PhysRevB.95.214422
  11. X.S. Wang, H.Y. Yuan, X.R. Wang, A theory on skyrmion size. Communications Physics, 1(1),(2018)31. https://doi.org/10.1038/s42005-018-0029-0
  12. A.K. Behera, S.S. Mishra, S. Mallick, B.B. Singh, S. Bedanta, Size and shape of skyrmions for variable Dzyaloshinskii–Moriya interaction and uniaxial anisotropy. Journal of Physics D: Applied Physics, 51(28), (2018) 285001. https://doi.org/10.1088/1361-6463/aac9a7
  13. J. Xia, X. Zhang, M. Ezawa, Q. Shao, X. Liu, Y. Zhou, Dynamics of an elliptical ferromagnetic skyrmion driven by the spin–orbit torque. Applied Physics Letters, 116(2) (2020).https://doi.org/10.1063/1.5132915
  14. J. Jena, B. Göbel, T. Ma, V. Kumar, R. Saha, I. Mertig, C. Felser, S.S. Parkin, Elliptical Bloch skyrmion chiral twins in an antiskyrmion system. Nature communications, 11(1), (2020) 1115.https://doi.org/10.1038/s41467-020-14925-6
  15. H. Zhu, G. Xiang, Y. Feng, X. Zhang, Dynamics of elliptical magnetic skyrmion in defective racetrack. Nanomaterials, 14(3), (2024) 312. https://doi.org/10.3390/nano14030312
  16. M. Ponsudana, R. Amuda, R. Madhumathi, A. Brinda, N. Kanimozhi, Confinement of stable skyrmionium and skyrmion state in ultrathin nanoring. Physica B: Condensed Matter, 618, (2021) 413144. https://doi.org/10.1016/j.physb.2021.413144
  17. I.R. de Assis, I. Mertig, B. Göbel, (2024) Circular motion of non-collinear spin textures in Corbino disks: Dynamics of N'eel-versus Bloch-type skyrmions and skyrmioniums. arXiv. https://doi.org/10.48550/arXiv.2402.03023
  18. X. Zhang, G.P. Zhao, H. Fangohr, J.P. Liu, W.X. Xia, J. Xia, F.J. Morvan, Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Scientific Reports, 5(1), (2015) 7643. https://doi.org/10.1038/srep07643
  19. M. Beg, R.A. Pepper, H. Fangohr, User interfaces for computational science: A domain specific language for OOMMF embedded in Python. AIP Advances, 7(5) (2017). https://doi.org/10.1063/1.4977225
  20. M. Ponsudana, R. Amuda, R. Madhumathi, A. Brinda, N. Kanimozhi, Confinement of stable skyrmionium and skyrmion state in ultrathin nanoring. Physica B: Condensed Matter, 618, (2021) 413144. https://doi.org/10.1016/j.physb.2021.413144
  21. O.G. Udalov, I.S. Beloborodov, M.V. Sapozhnikov, Magnetic skyrmions and bimerons in films with anisotropic interfacial Dzyaloshinskii-Moriya interaction. Physical Review B, 103(17), (2021) 174416. https://dx.doi.org/10.1103/PhysRevB.103.174416
  22. S.Z. Lin, A. Saxena, Noncircular skyrmion and its anisotropic response in thin films of chiral magnets under a tilted magnetic field. Physical Review B, 92(18), (2015) 180401. https://doi.org/10.1103/PhysRevB.92.180401
  23. U.K. Roessler, A.N. Bogdanov, C. Pfleiderer, Spontaneous skyrmion ground states in magnetic metals. Nature, 442(7104), (2006) 797-801. https://doi.org/10.1038/nature05056