Vol. 1 No. 1 (2024): Volume 1, Issue 1, Year 2024
Articles

Ultrahydrophobic Properties of Plasma Surface Modified Cotton Fabric

Anupriyanka T
Department of Science and Humanities, Nehru Institute of Technology, Coimbatore-641105, Tamil Nadu, India
Shanmugavelayutham G
Department of Physics, Bharathiar university, Coimbatore-641046, Tamil Nadu, India

Published 2024-07-30

Keywords

  • Superhydrophobic,
  • Cotton Fabric,
  • DC Glow,
  • Rose Extract

How to Cite

T, A., & G, S. (2024). Ultrahydrophobic Properties of Plasma Surface Modified Cotton Fabric. Proceedings of the Asian Research Association, 1(1), 1-11. https://doi.org/10.54392/ara2411

Abstract

The superhydrophobic property of the fabric can be obtained by plasma techniques instead of using chemical methods. These chemical methods were very dangerous to the health of human as well as the environment. This article gives an idea for the fabrication of superhydrophobic fabric using oxygen plasma. In this paper the change in chemical and surface properties have been investigated by XPS, AFM, FE-SEM analysis. The elemental composition and presence of various functional groups were identified using EDAX and ATR-FTIR. The plasma species were observed using optical emission spectroscopy.

References

  1. S.M.R. Razavi, J. Oh, S. Sett, L. Feng, X. Yan, M.J. Hoque, A. Liu, R.T. Haasch, M. Masoomi, R. Bagheri, N. Miljkovic, Superhydrophobic surfaces made from naturally derived hydrophobic materials. ACS Sustainable Chemistry & Engineering, 5(12), (2017) 11362-11370. https://doi.org/10.1021/acssuschemeng.7b02424
  2. X. Dong, S. Gao, J. Huang, S. Li, T. Zhu, Y. Cheng, Y. Zhao, Z. Chen, Y. Lai, A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced self-healing and versatile oil–water separation ability. Journal of Materials Chemistry A, 7(5), (2019) 2122-2128. https://doi.org/10.1039/C8TA10869B
  3. P. Malshe, M. Mazloumpour, A. El-Shafei, P. Hauser, Functional military textile: plasma-induced graft polymerization of DADMAC for antimicrobial treatment on nylon-cotton blend fabric. Plasma Chemistry and Plasma Processing, 32, (2012) 833-843. https://doi.org/10.1007/s11090-012-9380-1
  4. D. Parida, M. Jassal, A.K. Agarwal, Functionalization of cotton by in-situ reaction of styrene in atmospheric pressure plasma zone. Plasma Chemistry and Plasma Processing, 32, (2012) 1259-1274. https://doi.org/10.1007/s11090-012-9404-x
  5. G. S. Oehrlein, S. Hamaguchi, Foundations of low-temperature plasma enhanced materials synthesis and etching. Plasma Sources Science and Technology, 27(2), (2018) 023001. https://doi.org/10.1088/1361-6595/aaa86c
  6. A. von Keudell, V.S. der Gathen, Foundations of low-temperature plasma physics—an introduction. Plasma Sources Science and Technology, 26(11), (2017) 113001. https://doi.org/10.1088/1361-6595/aa8d4c
  7. D. Caschera, A. Mezzi, L. Cerri, T. de Caro, C. Riccucci, G.M. Ingo, G. Padeletti, M. Biasiucci, G. Gigli, B. Cortese, Effects of plasma treatments for improving extreme wettability behavior of cotton fabrics. Cellulose, 21, (2014) 741-756. https://doi.org/10.1007/s10570-013-0123-0
  8. N. Karthikeyan, K. A. Vijayalakshmi, K. Vignesh, Effect of glow discharge oxygen plasma treated surface and antimicrobial properties of viscose fabric. Materials Technology, 31(3), (2016) 166-175. https://doi.org/10.1179/1753555715Y.0000000037
  9. X. Zhou, Z. Zhang, X. Xu, F. Guo, X. Zhu, X. Men, and B. Ge, Robust and durable super hydrophobic cotton fabrics for oil/water separation. ACS applied materials & interfaces, 5(15), (2013) 7208-7214. https://doi.org/10.1021/am4015346
  10. Novák, M. Valentin, Z. Špitalský, A. Popelka, J. Sestak, I. Krupa, Superhydrophobic polyester/cotton fabrics modified by barrier discharge plasma and organosilanes. Polymer-Plastics Technology and Engineering, 57(5), (2018) 440-448. https://doi.org/10.1080/03602559.2017.1289397
  11. D. Caschera, R.G. Toro, F. Federici, C. Riccucci, G.M. Ingo, G. Gigli, B. Cortese,. Flame retardant properties of plasma pre-treated/diamond-like carbon (DLC) coated cotton fabrics. Cellulose, 22(4), (2015) 2797-2809. https://doi.org/10.1007/s10570-015-0661-8
  12. A. Zille, F.R. Oliveira, P.A.P. Souto, Plasma treatment in textile industry. Plasma processes and Polymers, 12(2), (2015) 98-131. https://doi.org/10.1002/ppap.201400052
  13. R.A. Jelil, A review of low-temperature plasma treatment of textile materials. Journal of materials science, 50(18), (2015) 5913-5943. https://doi.org/10.1007/s10853-015-9152-4
  14. J.M. Morrissette, P.J. Carroll, I.S. Bayer, J. Qin, D. Waldroup, C.M. Megaridis, A methodology to produce eco-friendly superhydrophobic coatings produced from all-water-processed plant-based filler materials. Green Chemistry, 20(22), (2018) 5169-5178. https://doi.org/10.1039/C8GC02439A
  15. C.H. Xue, X. J. Guo, J. Z. Ma, S.T. Jia, Fabrication of robust and antifouling superhydrophobic surfaces via surface-initiated atom transfer radical polymerization. ACS applied materials & interfaces, 7(15), (2015) 8251-8259. https://doi.org/10.1021/acsami.5b01426
  16. S. Fu, H. Zhou, H. Wang, J. Ding, S. Liu, Y. Zhao, H. Niu, G.C. Rutledge, T. Lin, Magnet-responsive, superhydrophobic fabrics from waterborne, fluoride-free coatings. RSC advances, 8(2), (2018) 717-723. https://doi.org/10.1039/C7RA10941E
  17. X. Zhou, Z. Zhang, X. Xu, F. Guo, X. Zhu, X. Men, and B. Ge, Robust and durable superhydrophobic cotton fabrics for oil/water separation. ACS applied materials & interfaces, 5(15), 2013) 7208-7214. https://doi.org/10.1021/am4015346
  18. T. Darmanin and F. Guittard, Superhydrophobic and superoleophobic properties in nature. Materials today, 18(5), (2015) 273-285. https://doi.org/10.1016/j.mattod.2015.01.001
  19. T. Zhu, C. Cai, C. Duan, S. Zhai, S. Liang, Y. Jin, N. Zhao, J. Xu, Robust polypropylene fabrics super-repelling various liquids: a simple, rapid and scalable fabrication method by solvent swelling. ACS applied materials & interfaces, 7(25), (2015) 13996-14003. https://doi.org/10.1021/acsami.5b03056
  20. J.H. Oh, C.H. Park, Macromolecular Materials and Engineering, Macromolecular Materials and Engineering, 303(1), (2018). https://doi.org/10.1002/mame.201870003
  21. S. Shahidi, M. Ghoranneviss, B. Moazzenchi, New advances in plasma technology for textile. Journal of Fusion Energy, 33, (2014) 97-102. https://doi.org/10.1007/s10894-013-9657-2
  22. N. V. Bhat, A.N. Netravali, A.V. Gore, M.P. Sathianarayanan, G,A. Arolkar, R.R. Deshmukh, Surface modification of cotton fabrics using plasma technology. Textile Research Journal, 81(10), (2011) 1014-1026. https://doi.org/10.1177/0040517510397574
  23. K. Vaideki, S. Jayakumar, R. Rajendran, Investigation on the enhancement of antimicrobial activity of neem leaf extract treated cotton fabric using air and oxygen DC plasma. Plasma Chemistry and Plasma Processing, 29, (2009) 515-534. https://doi.org/10.1007/s11090-009-9188-9
  24. K. H. Kale, A. N. Desaia, (2011) Atmospheric pressure plasma treatment of textiles using non-polymerising gases, NISCAIR-CSIR, India
  25. A. Suganya, G. Shanmugvelayutham, J. Hidalgo-Carrillo, Plasma surface modified polystyrene and grafted with chitosan coating for improving the shelf lifetime of postharvest grapes. Plasma Chemistry and Plasma Processing, 38, (2018) 1151-1168. https://doi.org/10.1007/s11090-018-9908-0
  26. S. Shahidi, M. Ghoranneviss, Sterilization of cotton fabrics using plasma treatment. Plasma Science and Technology, 15(10), (2013) 1031. https://doi.org/10.1088/1009-0630/15/10/13
  27. O.G. Armagan, B. Karagüzel Kayaoglu, H. Canbaz Karakaş, Plasma-induced adhesion improvement of cotton/polypropylene-laminated fabrics. Journal of adhesion science and technology, 27(21), (2013) 2326-2339. https://doi.org/10.1080/01694243.2013.774255
  28. K.K. Samanta, M. Jassal, A.K. Agrawal, Improvement in water and oil absorbency of textile substrate by atmospheric pressure cold plasma treatment. Surface and Coatings Technology, 203(10-11), (2009) 1336-1342. https://doi.org/10.1016/j.surfcoat.2008.10.044
  29. B. Kandasubramanian, M. Ramdayal, Advancement in textile technology for defence application. Defence Science Journal, 63(3), (2013) 331. https://doi.org/10.14429/dsj.63.2756
  30. M. Radetic, P. Jovancic, N. Puac, Z.L. Petrovic, Environmental impact of plasma application to textiles, Journal of Physics: Conference Series, 71, (2007). https://doi.org/10.1088/1742-6596/71/1/012017
  31. B.N. Sahoo, B. Kandasubramanian, Recent progress in fabrication and characterisation of hierarchical biomimetic superhydrophobic structures. Rsc Advances, 4(42), (2014) 22053-22093. https://doi.org/10.1039/C4RA00506F
  32. A. Suganya, G. Shanmugavelayutham, C.S. Rodríguez, Study on structural, morphological and thermal properties of surface modified polyvinylchloride (PVC) film under air, argon and oxygen discharge plasma, Materials Research Express, 3(9), (2016) 095302. https://doi.org/10.1088/2053-1591/3/9/095302
  33. G. Shanmugavelayutham, T. Anupriyanka, P. Bhagyashree, P. Premasudha, Plasma surface modification of cotton fabric by using low pressure plasma. IEEE Transactions on Plasma Science, 49(2), (2020) 497-501. https://doi.org/10.1109/TPS.2020.3015709
  34. F.R. Oliveira, L. Erkens, R. Fangueiro, A.P. Souto, Surface modification of banana fibers by DBD plasma treatment. Plasma chemistry and plasma processing, 32, (2012) 259-273. https://doi.org/10.1007/s11090-012-9354-3
  35. M. Orhan, D. Kut, C. Gunesoglu, Improving the antibacterial property of polyethylene terephthalate by cold plasma treatment. Plasma Chemistry and Plasma Processing, 32, (2012) 293-304. https://doi.org/10.1007/s11090-011-9342-z
  36. J. Jeevahan, M. Chandrasekaran, G. Britto Joseph, R.B. Durairaj, G. Mageshwaran, Superhydrophobic surfaces: a review on fundamentals, applications, and challenges. Journal of Coatings Technology and Research, 15, (2018) 231-250. https://doi.org/10.1007/s11998-017-0011-x